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ABSTRACT 

The purpose of this thesis is to develop a theory of the 

mechanical properties of noncross-linked polymers at temperatures 

above the glass transformation. The relationship between this theory 

and the dielectric dispersion of polar polymers is also discussed. 

If the bond lengths and bond angles of the molecular chains 

are constant during extension of a polymer, the configuration of an 

entire molecule at any time t may be specified by the azimuth angles 

of the bonds in the chain, and by the two angular coordinates describ- 

ing the rotation of the chain around its center of mass. The state 

of i:he material is described statistically by f. the relative number 

of molecules having each of the possible configurations. 

For a noncross-linked polymer, the onJy intermolecular 

forces are viscous in nature, and the force on a single element (one 

skeletal atom together with its side groups) is proportional to the 

velocity of that element relative to the surrounding atoms.  If the 

polymer is incompressible, and if the strain is everywhere the same, 

it follows that the molecular configurations during extension of the 

polymer may be described by Smoluchowski's diffusion equation: 

V-D-[VffW/kT] - |L, 

where D is the diffusion tensor of a molecule, k is Boltzmann's constant, 

and T is the absolute temperature. The potential V under which the 

diffusion takes place is equal to the r&te of extension multiplied by 



a quadratic function of the positions of the elements relative to the 

center of mass of the molecule. 

Once D and the rate of extension are known, the dif'usion 

equation can be solved for f, the probability of each molecular con- 

figuration. From f it is possible to find the stress on the polymer. 

In other words, the diffusion equation leads tc a general relationship 

between the stress and the extension. 

The solution of the diffusion equation includes the theoretical 

dependence of the stress upon the temperature. The predicted temperature 

effects agree with the observed mechanical properties of high polymers 

such as polyisobutylene. 

If it is assumed that the molecules in the unplasticized polymer 

move in the same way as in a dilute solution, the diffusion tensor is 

identical with the one given by Kirkwood and Fucss in their treatment 

of the dielectric dispersion of polar polymers [J. G. Kirkwood and 

R. H. Fuoss, _J. Chem. Phys. 9, 329 (1941)]. The stress relaxation 

calculated from this assumption decays too rapidly with time to fit 

the experimental properties of polyisobutylene. This discrepancy is 

believed to be due to the chain entanglements which occur in the 

unplasticized polymer.  However, the diffusion tensor can be corrected 

arbitrarily so that it gives the proper time dependence of the stress 

relaxation and therefore includes the effect of the chain entanglements. 

A diffusion tensor is found which correctly describes the mechanical 

properties of polyisobutylene over nine decades of time. The corre- 

sponding theoretical dependence upon the molecular weight does not 

quite agree with experimental results. 



I Ixi determining the response  of a polar polymer tc  an electric 

field, Kirkwood  and Fuoss use the diffusion tensor  applicable to dilute 

solutions.     It is possible to introduce into th.nr calculations the 

new diffusion tensor  obtained from the theory of extension.    Except 

for ths molecular weight  dependence,  the results of this correction 

agree reasonably well with the experimental dielectric  dispersion of 

unplasticized polyvinyl chloride.     It therefore seems possible to find 

a diffusion tensor correctly describing the time dependence of a polymer's 

response to both mechanical  and electrical forces. 
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I.     INTRODUCTION' 

An elastomer may be defined as a cross-linked or noncross- 

linked linear high polymer in which the bonds of the molecular chains 

are free to rotate,  or  at  least  are free to assume easily a variety 

of positions.    Contiguous molecules are also free to move relative to 

each other,,    Because the molecules lose much of their freedom of motion 

at temperatures below the brittle point, or glass transformation, it " 

is necessary to specify the temperature range in which a polymer 

behaves as an elastomer.    Examples of elastomers are polyisobutylene 

at room temperature and polymerized sulfur at higher temperatures. 

If not worked excessively, elastomers are amorphous,    To obtain a 

crystalline x-ray pattern for polyisobutylene, for example, the polymer 

must be extended rapidly at  least 1000#  [1], 

From the molecular properties of these materials, several 

things can be inferred about their response to mechanical stress.    When 

no external forces are acting on the polymer molecules, they reach an 

equilibirum state in which the bonds are randomly distributed among 

their possible relative positions.     On the average,  each molecule is 

then coiled up, with the direct  distance from one end of the molecule 

to the other proportional to the square root  of tha molecular weight   [2], 

External mechanical forces can extend a molecule to many times its 

equilibrium end-to-end length with only a slight  change in the internal 

1. C, S, Fuller, U.  J.  Frosch, and N. R.  Pape,_£.  Am,  Chem. Soc. 62, 
1905   (1940). 

2. L. R.  G,  Treloar,   "Physics of Rubber  Elasticity," Oxford, Oxford 
University Press,  1S49, Chapter  III. 



energy.    Consequently,  elastomers  are characterized by a small modulus 

and a very large extensibility. 

The first  successful application of the molecular description 

of elastomers was the theoretical treatment of the mechanical properties 

of cross-linked polymers in therraodynamic  equilibrium  [3],     If the 

molecules are cross-linked,  as in vulcanized rubber, the chains form 

a network running throughout  the material.    When stretched, this net- 

work can support  a force so long  as the cross-links  are not  disrupted 

chemically.    To compute  the force necessary to sustain a given strain, 

the chain configurations consistent with that  strain are counted.    The 

entropy and the  fcrcu  are then computed by ordinary thermodynamic 

arguments.     In this  calculation,  changes  in the  internal energy are 

neglected, a reasonable assumption in view of tne fact that the average 

inter-atomic distance is  affected very little  by the strain.    The 

dependence of the stress upon both the strain and the temperature, 

calculated in this way,  agrees reasonably well with experiment   [4], 

Noncross-linked elastomers, on the other hand, cannot support 

any stress in equilibrium,    The chains aro free to slip past one another 

and to resume unstressed configurations.    If the material is suddenly 

Fiom a large literature one might cite: 

K.  H.  Meyer, G.   von Susich,  and E.  Valko, Kolloid-Z. 59,  208  (1932), 
W.  T.  Busse, _J.   Phy_s_.  Chem.   36.,  2862  (1932), 
E. Karrer, Phys, Rev.   39, 857  (1932), 
H.  M.  James,  and E.  Guth, J.   Polymer S<?i.  4, 153  (1949), 
F. T.  Hall, J.  Chem.   Phys.   11,  527  (1943), 
P.  J.  Flory,  and J. Rehner, Jr., J.  Chem.   Phys.   11, 512  (1943), 
W.  Kuhn, Kolloid-Z.   76,  258   (19367, and 
L, R.  G.  Treloar, Trans.  Faraday Soc  40, 59  (1944). 

P.  J.  Flory, Chem. Revs.   35, 51   (1944);   and P.  J.  Flory, N. Rabjohn, 
and M.  C.  Shaffer,  J.   Polymer Sci.  4_, 225   (1949). 



. 
extended and then kept  at  a constant  length, the stress  decays very 

slowly to  zero from its initial value.    During  a large part  of this 

relaxation, the  force is approximately a linear  function of the log- 

arithm of the time  [5], 

The effect  of temperature on the stress relaxation is twofold. 

First,  the force  at  small times  is proportional to the absolute tempera- 

ture,  similar to the equilibrium forces for cross-linked polymers. 

Secondly, raising the temperature makes the relaxation more rapid. 

Reducing the molecular weight  also  increases the rate of relaxation, 

but does not  alter the magnitude of th>3 force at  small times. 

When  an elastomer  is polar,  it not  only has  interesting 

mechanical properties but  it  also exhibits an anomalous  dielectric 

behavior   [6],     The dielectric  dispersion of a polymer  such as polyvinyl 

chloride depends on the frequency of the  applied voltage,  and nas a 

broad,  low maximum in the  audio  frequency range,    Debye's  single relax- 

ation time does not  explain the frequency dependence of the loss,  and 

a distribution of relaxation times  is necessary to describe the exper- 

imental results.    The frequency of maximum loss varies with the 

temperature,  indicating  a temperature-time relationship similar to that 

observed for the mechanical properties, 

A theoretical treatment  of the dielectric dispersion has been 

given by Kirkwood and Fuoss   [7],     In this theory,  it  is  assumod that the 

5. R.  D.  Andrews, N.  Hofman-Bang,  and A.  V, Tobolsky, J.   Polymer Sci. 
_3, 669  (1948). 

6. A summary of the dielectric relaxation of polymers  is given by 
W.   Kauzmann, Rsv.  Mod.   Phys.   14,  12  (1942). 

7. J. G.  Kirkwood,  and R.   M.  Fuoss,  J.  Chem.   Phys.   9,  329  (1941). 



the bond lengths and bond angles of each polymer molecule are always 

constant, but that the azimuth angles of the bonds are continually 

rotating due to the thermal motion of the atoms.    In the presence of 

an electric field, the azimuth angles tend to rotate so that the indi- 

vidual dipoles of the molecule are aligned as much as possible with the 

direction of the field.    The only forces opposing this change in the 

molecul&r configuration are viscous drag forces on each of the polymer 

atoms.    The solution of the diffusion equation describing this process 

indicates that a molecular chain moves in sections of various length, 

with each section acting as a single mechanical and electrical unit. 

One might say, roughly, that the distribution of possible section 

lengths for a single molecule produces the distribution of relaxation 

times.    This theory predicts a broad maximum for the dielectric loss 

at low frequencies, but the calculated maximum is too large and too 

narrow to agree quantitatively with the experimental  results for 

unplasticized polyvinyl chloride. 

Kirkwood  [8] has extended the diffusion theory to include a 

treatment of the nonequilibrium mechanical properties of cross-linked 

elastomers.    He assumes that the stress on the material is carried 

entirely by the cross-links between the polymer chains.    Each molecule 

tends to increase in length under the stress-dependent force across 

its tiepoints, with the motion of the molecule being retarded by the 

viscous forces on each of the polymer  atoms.    The results of this theory 

have not been compared with the experimental properties of elastomers. 

6.    J.  G.  Kirkwood,^.  Chem.  Phys.  14, 51   (1946). 



In Kirkwood's theory,  it is  assumed that the viscous force 

on an atom in a given molecule is proportional to the velocity of that 

atom relative to the center of mass of the molecule.    Actually, however, 

the viscous force depends on the motion of the atom relative to its 

immediate surroundings.    That  is to say, the force is proportional to 

the velocity of the atom minus the velocity of the material around the 

atom, where both motions may bo measured relative to the center of mass 

of the molecule.    The velocity of the material at  any point  is  zero 

during the application of an electric field,  but  is not  zero if the 

polymer  body is being  strained by a mechanical force.    For extension, 

it may be shown readily that this velocity is proportional to the rate 

of extension of the polymer  body.    Consequently, there  is  a term in 

the viscous force which  is not related directly to the  stress on the 

polymer or to the motion of the molecule,  but  depends instead on the 

rate of extension.    This terr. is neglected by Kirkwood  although it 

can contribute to the intermolecular forces. 

The importance of this term may be seen most  clearly if we 

consider  a noncross-linked polymer.     In Kirkwood's theory,  an external 

stress cannot  be  applied to a polymer molecule unless  it  is cross- 

linked to the rest cf the material.    This comes about because it  is 

assumed that the stress  is carried entirely by the  cross-links.    The 

predicted modulus of a ncncross-linked elastomer  is therefore zero,  a 

result that does not  agree with experiment. 

Ih this thesis, the mechanical properties of an elastomer 

will be derived by a method which includes the effects of the viscous 

intermolecular forces..    We shall begin by relating the rate of extension 

I  



of the polymer to the flow of the material around the center of mass 

of a given molecule.    The way in which the flow  affects the viscous 

forces  on the molecule will then be derived.     A diffusion equation will 

be found which describes the way in which the molecules change their 

configurations under these forces.     Only noncross-linked polymers will 

be considered in order to emphasize the strain-dependent nature of the 

intermolecular forces. 

Qualitatively, the diffusion equation indicates that the 

molecules move  in the following way.     If there are no  external forces 

on the polymer, the thermal motion of the molecules tends to orient 

them randomly,  and the distribution of bond directions is  spherically 

symmetric.    During extension of the polymer, the azimuth angles rotate 

sn that the molecules tend to line up in the directio?i of the extension. 

If the elastomer  is then kept  at  a constar>t  length, the molecules  sluwly 

return by their thermal motion to a spherically symmetric distribution. 

This latter process is accompanied by the stress relaxation. 

Once the configurations of the molecules  arc known, one can 

calculate the stress on the elastomer.    Since the configurations are 

determined by the rate of strain,  it  is possible to find a general 

relationship between the stress on the elastomer  and its resultant 

extension.    This relationship will be  expressed in terms of  a distri- 

bution of mechanical relaxation times. 

The theoretical stress relaxation obtained in the  above manner 

has the correct temperature dependence, but  decays too rapidly in time 

to agree with the experimental data for unplasticized polyisobutylene. 



It  is believed that the primary reason for this discrepancy is that the 

motion of a polymer molecule  is altered by its entanglements with the 

neighboring chains    These entanglements retard the charges  in the con- 

figurations of the molecule and effectively increase the resistance 

constant  of each atom, where the resistance constant is the ratio of 

the viscous force on an atom to its velocity.    In other words, the 

visrous  force on an atom in an unplasticized polymer will be much greater 

than the corresponding force in a dilute polymer  solution.    Furthermore, 

the magnitude of the force will depend upon the position of the atom 

in its polymer chain.    In order to introduce  the effect of the entangle- 

ments into the theory, the resistance constants of the atoms will be 

made an arbitrary function of distance from the ends of the chain, 

contrasting with Kirkwood's  assumption that the resistance constants 

are tho same for all the atoms.    A set of constants will be found which, 

when substituted into the diffusion equation,  gives the correct  depend- 

ence of the stress relaxation upon the time as well as upon the temperature. 

The dependence upon the molecular weight  is not predicted correctly. 

The treatment  of the dielectric dispersion by Kirkwood and 

Fuoss  is  applicable only to dilute  solutions of a polar polymer,  because 

it does not  include any interactions between the polymer molecules. 

However, the theory can be corrected for  the chain entanglements by 

introducing the  set  of resistance constants which gives the correct 

mechanical properties of an unplasticized polymer.    This correction 

will be carried out  in the  last  section of this  thesis.    The resultant 

dielectric dispersion agrees quantitatively with the experimental prop- 

erties of unplasticized polyvinyl chloride. 



Excert for the molecular Height dependence, it would therefore 

appear that th? ad hoc set of resistance constants correctly describes 

the molecular diffusion within an "nplasticissd polymer at temperatures 

above its glass transformation. 



II.     THE MOLECULAR PROCESSES RESULTING FROM MECHANICAL EXTENSION 

This section describes the effects of mechanical extension 

upon the positions and configurations of the molecules in a noncross- 

linked elastomer.    By evaluating the intermolecular forces which result 

from extension, we can find the diffusion equation satisfied by the 

molecular configurations.     It  is then shown that  solution of the dif- 

fusion equation leads to  a relationship between the stress on the polymer 

and the resultant strain.    This relationship includes the dependence 

of the stress and the strain upon the time. 

A.    The Macrosocpic Flow During Extension 

Consider  a right  circular  cylinder  of elastomer,  of unit 

cross-section and unit  length when unstressed.     The dimensions of the 

cylinder  are much larger than the dimensions of the molecules.    Let 

the cylinder be extended parallel to its axis by a tirass   s(.t)    applied 

to the ends  of the cylinder.    The stress  is  an  arbitrary function of 

the time   t.    The macroscopic  strain   e(t)       is the relative increase 

in the length of the cylinder.     It will be  assumed that  e(t)     is  always 

much less than unity and that the area of the  cylinder  changes only 

slightly during extension.     It will also be  assumed thcit  any heat gen- 

erated by the application of the  external force to the  body is carried 

off rapidly enough so that the temperature  T  of the  elastomer  is constant, 

Let us  erect  a coordinate  system at the center  of mass of any 

one of the molecules  in the  cylinder, with the   2   axis parallel to the 

axis of the  cylinder.    During  extension of the polymer,  the origin of 

this coordinate svstem moves with the center of mass  uf  the molecule. 
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The usual cylindrical coordinates   p t   $ , ""«   *   will be used to measure 

position relative to the coordinate system. 

Consider a volume AV"  which has dimensions small compared 

with the dimensions of the elastic  body under consideration, but  large 

compared with trie size of a single atom.    Also, let us define  a time 

interval At   which is small compared with the times  involved in any 

experiment  on the polymer  body,  but  largo compared with the time  inter- 

val..- necessary to describe any single  atomic collision or  interaction. 

Let v   denote the average velocity of all the atoms inside AV  during 

th6 time  interval   At    .    This velocity is measured relative to the 

coordinate  system moving with the molecule.     It will be assumed that 

AV"    and At    exist  such that v   is  a continuous  and differentiate 

function of time and of position in the  body. 

If the strain inside the cylinder  is everywhere the same, 

the velocity v-   is  independent  of the choice of molecule upon which 

the coordinate system is erected.    From this  fact,  an expression may 

be found for -v-   in terms of the rate of extension.     By cylindrical 

symmetry,   v   will not  have  a component  in the   y>   direction, nor will 

any of its components be a function of   ^  .     Also,  it may be shown 

readily that the a    component  of v-  is  everywhere  independent  of   f>, 

and that  the p   component  of \r   is  independent of   2   .    We can summarize 

these results  by the vector  equation 

7«v -O. (!) 

Va denotes the usual three-dimensional vector  operator   (see page   16), 
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A second property of v- is obtained from conservation of the 

mass of the body.  If the elastomer is incompressible, the density is 

independent of th* time and the divergence of nr is zero: 

V3-Y=°- 
(2) 

Finally, the boundary conditions upon y may be given.  If 

e(t)  is much less than unity, the limit of (~>{)z as %    becomes very 

large is 

1 -»oo 

At the origin of the coordinate system, TT is identically zero. 

Equations (1) and (2), together with these boundary conditions, uniquely 

define the velocity function. The ar component of the velocity is given 

everywhere by 

M* - 2dT (4) 

and the p   component  by 

<*>/.—*/"&• (5) 

From these equations, we may show readily that the trajectories 

of the material relative to the molecular  coordinate system are 

p z = constant. ^gj 

This  set of trajectories  implies that   every small,  right  circular 

cylinder of material, with its axis parallel to the  z   axis,  always 

moves inside the main cylinder so as to retain its cylindrical shape 

and constant volume.    The flow pattern of the material  is  shown  in 



Pis. 1.   Flo* Tvttwa «f aa Iae«Br«Mifcl« M»t«ri«i ia nriwui 
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B.    Description of the Molecular State 

To define the state of the polymer at any time  t , it is 

necessary to add to v a description of the configurations of the mole- 

cules.    The instantaneous configuration of a molecule relative to a 

coordinate system erected at  its center  of mass can be specified by the 

direction of the center bond and by the azimuth angles along the polymer 

chain.    If  dc/it   is small, the bond lengths and bond angles arc constant 

during extension.    The side groups of the molecule may be free to change 

position    internally and to rotate around the bonds connecting them to 

the main chain, but these motions can be neglected if the side chains 

are relatively short. 

The zenith and aaimuth angles  0   and  $   will be used to specify 

the direction of the center bond.    If the molecular chain consists of 

2n-l     single bonds, the  azimuth angles  can be denoted by  X2,X'3 ,••••> Xg,,., > 

numbered from one end of the chain.    Exact definitions of ©, j>   and 

X2,^3, •-, **„_, are given  in Appendix I,     The  configuration of an entire 

molecule is specified by its  &,&, ^j!-"»^M.r 

Without loss in generality,  it may be assumed that  all of the 

molecules have tha same structure and molecular weight,  and are indis- 

tinguishable.    Consequently, the state of the molecules at  any time t 

may be specified by the number of molecules having each possible config- 

uration, without specifying which molecules have which configurations. 

For this purpose,   ^(e^.X^,...,^.,)     is defined such that 

c 3i*8 d9d0 d^... aX;2h_|        is the fraction of the molecules having 

configurations between   0, ^, X2 , X3>... .X^^      and   0 + d©, d'+d^, 

X<j* «^v i ^4h-i+        2h-l     '    ^ne num,tier  °f molecules  is constant, 
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and the integral of f over all possible configurations is always unity: 

jf<H=/. (?) 

The configurations of the molecules may be described most 

conveniently in the   2n    dimensional coordinate space  in which 

©» $ \ X-« » ••• » ^jn.| are orthogonal coordinates.    The differential 

volume element  dq      in this space  is equal to    sin8dt*d^ ^^z •'• • °'Sn-i * 

If the configurations of all the molecules  of the polymer  body are plotted 

as points  in this  space, the configurational probability   c   i3 propor- 

tional to the density of the points. 

The velocity of all the points  in the volume element    do   , 

when averaged over  the time interval At     ,  is denoted by    u  .    The 

components of   y    are    0,  p sin©, X^ , X.g , A.4 , ... ,  X.2n| .    The 

velocity   o   at  a particular point  in the space gives the rate of change 

of the corresponding molecular  configuration.    Specification of  u   over 

the  entire  space describes the way in which all of the configurations 

are changing with time. 

In summary, the  state of  an  incompressible elastomer may be 

specified for  our purpose  by    t   , the probability of each configuration. 

The rate  at which the state  is  changing may be specified by the velocities 

ir    and   o   .    By using this  statistical description of the molecular 

state, we can find the response of an elastomer to mechanical and 

electrical forces, 

C.     The Diffusion Equation for the Molecular Configurations 

Once the  state of the elastomer   is  defined,  it  is possible 

to describe the  intermolecular  forces.    Knowing these  forces, we can 
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obtain the equation of notion of the molecules.     Because the stress  and 

strain are measured as  averages over times at  least  a?  largo a? the 

interval    At   , the forces  acting on a given molecule may also be  aver- 

aged over   At   .     Only that  average force need be considered in finding 

an equation of motion. 

If the side groups are  small, the  average motion of the groups 

on any single atom of the main molecular  chain is  the same as the  average 

motion of the atom itself.    Hence,  the entire molecule  including its 

side groups may be divided  into   2n      equal elements which may be treated 

as rigid  bodies.    Each element   is  at  a constant  bond length and bond 

angle from the next  element  along the chain,  but   is free to rotate around 

the azimuth angle of the bond.    The forces on each element consist of 

the constraint  forces required to keep the bond lengths  and bond angles 

constant, plus the average external force due to the surrounding atoms. 

The constraint  forces need not  be considered if the molecular motion 

is described in the internal coordinate space of   &,#>, ^g »•••» ^~2n.i • 

The thermal motion of an element  consists of jumps from one 

stable position  to another,  accompanied by rearrangement  of the surround- 

ing atoms.    Let   Vj     denote the velocity of the  i-th element  in  the 

chain  (numbered from one end).    This velocity is measured relative to 

the center  of mass of the molecule,  and is averaged over the time 

interval    At .     If the energy of thermal agitation is large compared 

with the energy required for  a single jump, many such motions occur 

during   At ,    To a good approximation,    v-t    is  a continuous  function 

of time.    This  approximation implies that *J    is  also  continuous. 
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From this description of the motion of the molecules, it may 

be postulated immediately that the average intermolecular force F-t     on 

the i-th element is viscous in nature, and is proportional to the velocity 

of the element relative to its surroundings: 

where v is measured at the position of the element in question. The 

resistance constant ^ is assumed to be independent of the velocity 

and position of the element. 

One part of F-  may be derived from a potential V- , defined 

by 

-<7V, = ^r 
(9) 

As in Equation (8), y is measured at the position of the i-th element. 

From Equations (4; and (5) we may show readily that 

Introduction of V;  into Equation (8) gives 

For an unplasticized polymer, there is no need to consider 

the hydrodynamic interactions between elements of the same molecule. 

The flow represented by v describes the motion of all the atoms near 

the i-th element, including those on the sane chain.  Ft  therefore 

includes the forces between elements of the same molecule. This case 

is quite different from that of a dilute solution of a polymer, in which 
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the hydrodynamic interactions must be considered separately from the 

viscous forces due to tha flow of the solvent [9], 

All of the viscous forces acting on a molecule are equivalent 

to a generalised force F^ in the internal coordinate space of 

0,  £>   X?   i   *3   •      •'X2»i-l  *      ThlS   f°rCe   iS   glVen   by 

ff = -VVf-^y, (12) 

where /o is the resistance tensor. The components of p may be found 

from the resistance constants by computing T , the torque around an 

angle    X. .fc   produced by rotation around some other  angle   X.   : 

T^E^jXj. (13) 
j 

The calculations for p   are given in Appendix I. The potential \A is 

the sum of all the individual potentials of the elements: 

V   =idiv c,. [p2-zz\). (14) 

It  should be noted that  the V   in Equation  (12)   (and in all succeeding 

equations) is the vector operator  associated with the internal coordinate 

space,  and consequently has   2n   dimensions.    The V3    in Equations   (9) 

and  (11)  is the usual three-dimensional quantity. 

If the polymer body is  in equilibrium and there  are no external 

forces on the molecules, the  aiigxes   Q, r •, ~a>— > "-a»%-i      are free to 

assume any possible set  of values   (assuming that the bond rotations  are 

3.    F. Bueche, J.  Chem.  Phys.  20, 1959  (1952).    The hydrodynamic  inter- 
actions and their  effects in polymer solutions  are described by 
J. G. Kirkwood,  and J. Riseman, J_.  Chem.   Phys.  16,  565   (1948); 
J.  G.  Kirkwood, Rec. Trav.  Chim.  68, 649  (194S);   and 
J. G.  Kirkwood,  and P.  L.   Auor, _J.  Chem.   Phys.  19,  281  (1951). 
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entirely unrestricted).  Owing to the thermal motion of the molecules, 

all po;>s:ble configurations of the molecules are attained during a long 

interval of time. The configurational probability c is equal to £„ , 

a constant in the internal coordinate space: 

? = $0= [^d^]"'. (15) 

Furthermore,   \J   is  identically zero. 

If the body is not   in equilibrium,   f   is not  equal to   -fo   . 

The thermal motion of the molecules tends to  shift   £    gradually back 

toward the equilibrium distribution,  and   u    is not  zero.     The effective 

force   (averaged over   At   ) that  is equivalent  to this tendency to return 

to the equilibrium state  is    - U0T "7f/{        , where   k0 is Boltzmann's 

constant.     During this motion,  ij;    must  satisfy the  equation of continuity. 

?•(*«)--!!•• ds) 

When there  are no  electric  torques  acting on the molecules, 

the  sum of the thermodynamic force and the  viscous  force  is equal tc 

zero  (assuming negligible  inertia for  the molecules): 

Ff-kTVfA=0. (17) 

Introduction of the diffusion tensor  D ,  defined as 

p = K>Te~\ (18) 

and use of Equations   (12),   (16),   and   (17)  lead  finally to the diffusion 

equat ion: 

V-D-[V{ • f7V«/koT] = |*. (19) 



I 

IS 

This  equation can je solved for   £    if the potential    V,    and the dif- 

"A fusion tensor  D    are known  . 

The diffusion equation may be written in the  form of Equa- 

tion  (19) only when   V,   exists^ that  is, when the viscous forces  are 

"conservative".    The existence of a potential follows  immediately from 

the fact that the curl of the velocity is zero  (Equation 1).     If the 

external stresses  applied to the elastomer were shear forces, then the 

curl of the velocity would not  be zero and  a scalar  potential would not 

exist.    The solution of the diffusion equation for shear  forces will 
if 

not be studied in this thesis  . 

If an electric field instead of a mechanical stress is  applied 

to the polymer, the only change in the diffusion equation is the replace- 

ment  of   V,    by    Ve    ,  the electric potential of a molecule in the field. 

The same diffusion tensor  is  applicable in both cases.    The diffusion 

equation is then identical with that  used by Kirkwood  and Fuoss to 

coiirmte the dielectric  response of a polar polymer   [7],     In general _, 

for \h*. application of  either  an  electric  field,  a mechanical extension, 

or both simultaneously, the equation of motion for  ^    may be written as 

V-0-[Vf + fW/kj] «  #, (20) 

I'his  section is not meant  to be a demonstration of the  applicability of 
Gmoluchowski's diffusion equation to elastomers  at temperatures  above 
the glass transformation.     It  is intended, rather, to show that the 
applicability of the diffusion equation is  a reasonable assumption,  and 
that  ths potential for noncross-linked molecules  is then given by 
Equation  (14).    For a discussion of Smoluchowski's equation, see 
S.   Chandrasekhar, Rev.  Mod.  Phys.  15, 1  (1943). 

if 
For a discussion of shear forces in solutions, see [9], A somewhat 
different method of approach is given by P. Debye and A. M. Bueche, 
Z_.  Chsm. Phys. 16, 573 (1948). 
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where the total potential is 

V = Ve+Vf. (21) 

This potential applies  only to noncross-lir.'.'.aci polymers  and dees not 

include the forces en a molecule due to permanent cross-links.    No study 

of such forces will be made here. 

D.    The Relationship between the Stress and the Strain 

Returning to the problem of mechanical extension of a noncross- 

linked elastomer, we can derive  a general expression for the mechanical 

energy required for  extension.    The rate  at which energy is withdrawn 

from the surrounding atoms by each molecule is the sum of the scalar 

products of   £"•      and    y* : 

»5t LeUcuU =  Z Fi"^* (22) 
4. 

Replacing v   by   (v-y.)-t- 5T;        an° US:'J16 Equation  (8), we have 

The corresponding equation  in the  internal coordinate space is 

(|f) =  FT^'-F+uT (24) 

From Equations (12), (17), and (18), we obtain 

(£) ,      ^-P-Wx* (25) 
<jt   molecule £ 

~ Y ,  the complex conjugate of if, is introduced to ensure thet the 
energy is real. 
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If the total number  of molecules per unit volume is    ne   , the 
I 

number  of molecules with configurations  between   0,95, Xz , •• • 1 ^-2».-i 

and  e+c|e,  tf + d#,   X2-t-dXz,  ..., ^,,., + dX^., is   n0f ctc^ , 

where do     is    $in©d© J ?   JX2... dX2fi_( ,    The total rate at which 

energy is introduced into the body is the rate at which energy is  supplied 

to each moleculet multiplied by the number  of molecules having the same 

configuration,  and integrated over the internal coordinate space: 

hi 
2)t =  -"ojVf -D- VVf*dv (26) 

Applying the divergence theorem and noting that the coordinate space 

has no boundaries  (it  is  everywhere re-entrant  as the  angles 

&>4>-> ^2)--> ^2h./ change by   TJ    or   2v  ), we obtain 

tf-n.jv;>p.vfdV 

Thus the total rate  at which energy is  supplied to the elastomer may be 

calculated from the potential and the  configurationa]  probability.     It 

is not necessary to determine explicitly any of the forces or velocities. 

In order to  interpret  the rate of energy transfer in physical 

terms, Equation  (26) may be considered in i\ slightly different form: 

= -,0k#T|(^).p.(gX*jd<l) (28) 

or at 

* 

- ".K,Tjkf7.p-(^jcJV (29) 
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By substituting for   V' D • (c W,/k^T) from the diffusion equation 

and applying the divergence theorem,  it  is  possible to  obtain: 

at = nXT^H^+"XT\*f*\ (30) 

If the entropy per unit volume were defined as 

5 = "oK^fH'h* (31> 
the first term in Equation  (30) would be the time derivative of  TS . 

It represents the rate  at which energy is  stored  in the elastomer,  and 

is dependent only upon the configurations  of the molecules.    Over  a 

complete cycle of sinusoidal motion,  this term fines not  contribute to 

the total energy loss.    The second term in Equation   (30)   is  a positive 

definite quantity  that   increases the energy supplied to the elastomer 

monotonically with the time.     It represents the viscous  loss due to 

the relative motions of the molecules,  and is the rate  at which energy 

is dissipated as heat. 

It  is now possible to find an expression for the stress   s(t). 

The rate at which energy is  supplied to the body is  equal to 

Si-Sit)6t- <32) 

Equating this energy to the energy given in Equation (27), we obtain 

finally 

£(tJ  (33) 

This equation completes a general description of the phenomena 

occurring during extension of a noncross-lnnked polymer.  If the exten- 

sion £(i)  is given, the veloci+y v describing the relative motions of 



the molecules may be calculated from Equations (4) and (5). Equation (14) 

gives the potential V^  in terms of dc/dt  .  If the resistance tensor 

and its inverse are known, the diffusion equation may then be solved 

to find the internal configurations of the molecules. Substitution of 

V^  and £ into Equation (33) gives the stress.  In other words, it 

is possible tc find the external stress that must be impressed on the 

cylindrical polymer body in order to produce a given extension. 

The above set of equations is equivalent to a distribution 

of relaxation times defining the general relationship between s(t) 

and c(t)  ,  In Section IV, a method will be given for calculating the 

distribution of relaxation times once the resistance tensor is known. 



III.  QUALITATIVE DESCRIPTION OF THE MOLECULAR MOTION DURING EXTENSION 

Before deriving a general solution for s(t) , it might be 

pertinent to discuss qualitatively the molecular motion resulting from 

various types of extension.  If the material is initially in equilibrium, 

the molecules are randomly oriented and have equal probability of 

assuming all possible configurations. The molecules move from one 

configuration to another by random thermal motion, and there is no net 

gain or loss in the number of molecules having each configuration, 

This state corresponds to £ =» f„  and u =• O . 

Let us suppose that the material is now extended at a constant 

rate. The molecules move past one another in a continuous stream, 

Relative to the center of mass of any given molecule, the flow may be 

represented by the lines in Figure 1. The molecules move in from the 

sides and out toward the top and bottom of the figure. This motion 

tends to pull the randomly oriented molecules into alignment with the 

direction of extension. Each element along a molecule is subjected 

to a viscous force proportional to its velocity relative to the sur- 

rounding material. At first, when the extension is small, the elements 

are free to move nearly at the same velocity as the s-.irrounding atoms, 

and the forces on the molecule are small. As the flow continues, the 

constant bond lengths and bond angles prevent the elements fron following 

the flow lines, and the forces on the molecule increase.  After very 

long times, a steady state of viscous flow is reached, in which the 

molecules on the average are not changing their configurations although 

they are still moving relative to each other. The external stress, an 
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average of the molecular  forces through a cross-section of the material, 

has then risen to a constant maximum value.    The probability of each 

configuration is  again  independent  of the time,  but  is now given by 

^f+fVVK.TS0, (34) 

or ir=   Ae , (35) 

where A is a normalizing constant.  In other words, the configurations 

of the molecules are described by a Boltzmann distribution, and are in 

thermodynamic equilibrium even though the macroscopic dimensions of the 

elastomer are changing with time. 

Let us assume that the extension is now suddenly stopped, and 

that the length of the cylindrical body is fixed.  The flow of the 

molecules past one another is zero. Each molecular chain is free to 

diffuse back to the state ^ = ^0 , assuming, of course, that no crystal- 

lization has occurred. The contracting molecules tend to drag the 

surrounding atoms back with them along the flow lines, and an external 

force is necessary to keep the material at constant extension. After 

a very long time, c   again returns to f0 , and all possible configura- 

tions are equally probable. The viscous, forces are then reduced to 

zero. So far as the individual moleov.l«s are concerned, this state 

is precisely the same as the initial state even though the macroscopic 

dimensions of the material have changed permanently. 

Let us consider finally what happens during an experiment in 

stress relaxation in which the elastomer is suddenly extended to a 

constant length.  If the extension is rapid enough relative to the rate 
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of diffusion, the bonds are distorted and new degrees of freedom are 

introduced into the molecular configurations. In this state, £   cannot 

be described solely in terms of 9, 0;X2)..,,X 2K-I . After the 

extension is fixed, the bonds return quickly to their equilibrium length, 

and the stress simultaneously decreases from a large value to a more 

moderate one.  At this moderate stress, the molecular configurations 

can again be expressed in the internal coordinate space of 

9, T > ^-jji"** ^jhJ|    t  and tne intermolecular forces are entirely 

viscous in nature. At still later times, the molecules slowly diffuse 

back to the equilibrium sta*:e. The force decays to zero during this 

process in the same way as it decays during the relaxation described 

first (constant length after slow elongation), and may be calculated 

from the solution of the diffusion equation. 

It is apparent from this discussion that the diffusion theory 

of Section II correctly decCixues the stress relaxation only at fairly 

long times after extension. Unless changes in the bond lengths and bond 

angles are introduced, the thecry cannot be used to describe the initial, 

rapid decay of the stress [10], 

10.  A. V. Tobolsky, J. Am. Chem. Soc. 74, 3786 (1952) points out that 
there are two distinct phenomena occurring during the stress 
relaxation. 
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IV.    GENERAL SOLUTION OF THE DIFFUSION EQUATION 

In order to find a general solution for   s(t/)      in terms of 

t(t)     , let us assume that   e(t)     is given by (the real part of) 

tajt 

(36) 

The (complex) amplitude ee  is independent of the time. From Equation (14), 

the potential is then 

X 
2  „ Z IW L 

V=^l4(f>.'-2.:)e": 07) 4 

The resistance constants    C,:    will all be equal to  a constant    ^c     in 

a solution so dilute that there are no interactions between the moleeul;;-!, 

Whether    £.    is equal to   ^   or not,   V   may be written  as 

(38) v= vy-* 

where V0 =» —  2_ T" ( ^ ~ 2 Ei <>' (39) 

For  a potential of the above form,  f   may be expanded in a 

Fourier  series  in the time: 

i   =   2_ ^ e > (40) 
n = 0 

where fn is independent of the time but is a function of 

S,F, X2,..., <^2„_   .  If £o is small, the potential of any possible 

configuration will be small compared with k0T , From Equation (19), 

it follows that f„  is much smaller than fb_,   , and the higher terms 

i"he subscript on the potential will be omitted hereafter. 



27 

in the Fourier series for ^ may be neglected: 

{ = -fo+ f,e (41) 

Substitution of   V    and   f   into Equation  (19) gives 

V-DVf0 = o {42) 

and                                             ^0{7f+f.7VAT]*i»f, (43) 

If V were identically zero, f would reduce to f0 , Con- 

sequently, f0 must represent the state of equilibrium and be independent 

of ©, ^ j X$ , Xj,--, X2n_( . When normalized, 

f.«iw",= '/^ztrr: (44) 

and is identical with the    -f0    introduce! previously. 

Let us now define the orthogonal eigenfunctions    r^   of the 

diffusion operator V D'V      : 

y.py^s- x^x= Q. (45) 

The /(   are a complete set of all the functions of 0,^ ^v^in-i 

satisfying Equation (45). Each eigenfunction ^x  has a corresponding 

eigenvalue A. The eigenfunctions are to be normalized as well as 

orthogonal: 

i^<H=Sf, (46) 

where    H* is the complex conjugate of    ri,      and     ox     is Kronecker's 

delta. 
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V0  may be expanded in terms of the eigenfunctions: 

Vi i <u «„ ?» \— .  • 

i=4ir?d^' (47) 

From Equations (39) and (46), the expansion coefficients dx f  which are 

independent of  ©,#, Y-z , ... •, X-2„_,     as well as the time, are given 

by 

The time dependent part  of the  configurational probability also may be 

expanded in terms of the    *A    : 

t,=V^- (49) 
X 

Substituting the expansions of   V    and   f,     into Equation (43), using 

Equation  (45),  and integrating over the internal coordinate space  after 

multiplication by     -k        , we obtain 

^-~4k.T(n-iw*;  *' (50) 

Finally, substituting     b.     into the expression for  Jf , we have 

By Equations   (45)  and   (51),    V  D • ^f    is 

V-p.7f-^Jilfr£ e 
4k0T ^— (1+ WX) (52) 
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The complex conjugate of the potential, by Equation (47), is 

<7. 
«    ,•     Lu»t 

v-^ £••>>;•-• (sa) 

Introducing these last two expressions into Equation  (33) together with 

cU/e)t        from Equation  (36)  and using the orthonormality of the    Y^       , 

we have 
3-   xd.d:  ^ ... LnQu>*0 s•- V~      X_dxdk 

L 

SW "  ~^T - 2_ [T^MJ        • (54) 

This  equation gives the  amplitude  and phase of the stress that must be 

applied to a cylinder of the elastomer  in order to produce a sinusoidal 

extension of amplitude   co    , 

To the  approximation that the  stress  is  a linear  function of 

the strain,  a convenient way to express the general experimental relation- 

ship between the stress  and  the extension  is in terms of a distribution 

of relaxation times    Z'("*) ^'(T)        is  defined by 

-(t-t'Vr e,t^ cU(f')  JlV 

t'=-<» y-o 
W„-J   j ,-"-,'v • rw «* af*. 

^(hen e(t)  is given by the real p-*rt of e0 e       , the succeeding 
equati-,AS for V, f  , and s(t)  should also be prefaced on their right 
sides by the words "the real part of." Equation (33) for the stress 
should be written as the real part of V* ,  multiplied by the real 
part of V-D-Vf  , and divided by the real part of dc/dt        . How- 
ever, V is~ always in phase with de/dt   , and "the real part of" 
may be omitted in all the equations.  It should also be noted that 
V*  is determined by changing the factor in V  dependent upon the 
configuration of the molecule and does not involve a change in the 
complex dependence upon t . 
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The sinusoidal solution of the diffusion equation given by Equation (54) 

is sufficient to calculate the distribution of relaxation times. Let us 

define il(>0      as the sum of all the terms    <^y <^v having   X'     less 

than X  : 

nws£ dvj*. (56) 

In practice it  is nearly impossible to perform this  summation exactly, 

and    O(X)    must  be  approximated by a continuous  function of   X ,    To 

this  approximation,  its derivative exists: 

H(Ma^. (57) 

By introducing    H(M    into Equation  (54), we may express    sit)     as an 

integral instead of a summation: 

. .     ;n,u>«.?, f xh(X) ;\   i«»t 
s(t; = ——=— I  : :—rrr e    . (53) 

Ibk.l       J    <J +• 1.01/ A) WU/ 

Substituting a new variable 

into this equation, we have 

r . i- (59) 

e„C:r°°H(T)c!r ** 
e . (60) 

For sinusoidal motion, Equation (55) becomes 

CD 

$(t) = t„«.JiL£>-- 
(|t iui-r)   C  • (61) 

T16 
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i < 
If Equations  (60)  and   (61)  are to give the same amplitude and phase for 

the stress,    E'(T)      must be identical with 

E»   =  ^^ . (62) 

This equation completes the derivation of the general theoret- 

ical relationship between the stress and the strain,. The method for 

finding C>.T)  from the diffusion tensor D may be summarized as 

follows:  (1) the eigenfunctions V^  of V-D-<7  are calculated from 

Equation (45); (2) from the ^x }  the expansion coefficients dx  of 

the potential are obtained from Equation (48); '3) the function H\A/ 

is calculated from the dx  by Equations (56) and (57); and (4) H(M 

is substituted into Equation (62) to find E?(r)     . The solution for 

E.'(T)   may then be substituted into Equation (55) to find the stress 

corresponding to any form of e(t)     }  whether sinusoidal or not. 



32 

V,    SPECIFIC SOLUTION FOR THE STRESS RELAXATION 

In this section, the distribution of relaxation times is 

computed from the diffusion tensor obtained originally by Kirkwood and 

Fuoss,    The stress relaxation at  constant extension is then calculated 

from    £("»*)     and compared with published experimental results for poly- 

isobutylene. 

The first  step in finding    £("r')      from the general derivation 

in Section IV is to evaluate   D     the diffusion tensor.    D    is defined 

as    k,Tp , where /O   expresses the relationship between the viscous 

torques and the rates of change of the angular coordinates 

Ti=Z/?ij^J- (S3) 
j 

The iesistance tensor p   has been evaluated by Kirkwood and Fuoss  ; 

their derivation is reproduced in Appendix I,    The tensor p   is dependent 

upon the resistance constants    £J;    of the individual elements of the 

chain.     It is assumed in Appendix I that  all of the    <f4-    are equal to 

£    , where    (fo    (introduced and defined approximately on page 26) is 

the resistance constant of an element moving in a liquid composed of 

the unpolymerized elements.     In other words, it is assumed that the 

viscous  force on a polymer  rhain is the same whether  or not the sur- 

rounding fluid is polymerized. 

The resistance tensor /o   resulting from this  assumption is 

a complicated, nondiagonal function of the angles defining the 

*See Appendix I of  [7], 



r 
• 

33 

configuration of the chain.    It is so complicated that exact evaluation 

of its inverse is  impracticable.    However, we can approximate g   by 

noting that   f,     is much smaller than   c0     in Equation (41).    In other 

words, the distribution of molecular configurations is very close to 

the equilibrium distribution    f0   .    Thus, there should be only a small 

change in    E-(r)     if /O   is replaced by  /o   ,  its average over  all pos- 

sible configurations of the molecule.    To this  approximation, tha 

diffusion tensor  becomes 

9 = tn£>"' (64) 

Evaluation of D is quite simple because jo is diagonal in the internal 

coordinate space. From Equations (130) and (131) in Appendix I, the 

nonzero components of Q are 

Pee=^ = Do/2 <65> 

and gM = D«[l-|^|]~? (66) 

where 0o = 3lC"/C.*V« (67) 

a, is the bond length and n is half the number of elements per mole- 

cule. {Tor  substituted polyethylenes, n is equal to the number of 

monomers per molecule.) 

From Equations (133) and (134), the corresponding eigen- 

functions ^  of the diffusion operator are 
A 

. .  > .      ...  I <M <p     r^jg^OCi-KDIi^/o-j-^' p*V ^   -.*-ff-' U4X4 
(68) 
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and the eigenvalues are 

The    r£     are the associated Legendre polynomials.    The total set of 

eigenfunctions includes the    5^      for all positive  £, all   ma   vhose 

absolute values are less than or equal to   -*, and all positive and 

negative    w^ ,    The above results are those obtained by Kirkwood and 

Puoss  [7], 

The next problem is to find the expansion coefficients   ax 

of the potential.    From Equation  (48), the    c<      are equal to 

\-!7.\Z(£-z<)^\ (70) 

when £ = fi^  . He might note that the potential is a quadratic 

function of the position of the elements. This case contrasts with 

that for an electric field, where V is linearly dependent upon the 

positions of the polar side groups. Because the potential is quadratic, 

evaluation of the dx  is quite laborious. A summary of the compu- 

tations for the dx  is given in Appendix II. 

After the d^ have been determined, the next step is to 

find 

(71) 

/1(X)  is the sum of the squares of all a^    whose corresponding 

eigenvalues are less than A . It is nearly impossible to evaluate 

this summation exactly, but it can be approximated in the following 

way.  Let us consider all the aK   having some particular absolute 

value. These d^ have corresponding eigenvalues (given by Equation (69)) 
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that ars all nearly equal.  It is not too much in error, then, to assume 

that the <*x    having the same absolute value also have the same eigen- 

value. To this approximation, fl(X)   is given by 

JMX)=£ N(X)d/_, (72) 

where N(M  is the number of dx having soms particular absolute 

value. The corresponding average eigenvalue is X . This approximation 

to -0 {X)    is similar to one used by Kirkwood and Fuoss in their treat- 

ment of the dielectric dispersion. 

fl(^)    is evaluated in Appendix III. From Equations (187) 

and (189), we have 

nW=^V(c^(^-c-.-^H)+(iL) + (^j,      (73) 

where c= 3X/^D.- (74) 

Once   Rib)     is known,    'A(X)   and    E'(T)      can be found from 

Equations  (57) and  (62).    The distribution of relaxation times is 

„. • 11 -n* * 

I(T) = ^o?7^3)5 (' __ " ^7TT" (^l5" ""^Q'r    (75) 

When expressed in terms of T , the variable c is 

C = r,/r, (76) 

where % => C.a*n/2lc#T. (77) 

fvj0   is half the total number of elements in a unit volume of the polymer, 

and is independent    f the molecular weight.     (For  substituted poiyethylenes, 

Equations  (75),   (78),  and  (79)  are correct only if   %/* « r « %n. 
If   T < %/n or      > > T„^,     E'(f)      is zero,    Because   h   is very large, 
these limits can be neglected in thw calculations for   a(t). 
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N0     is the number of monomers per unit volume,,)    The time   T0     is a 

function of both the temperature and the molecular weight. 

The distribution of relaxation times is plotted versus f/t0 

in Figure 2, with logarithmic scales for both variables.    The limiting 

value of     E'(f)     for small  T   is 

zXr)z^M-.      y«y0 (78) 

As T increases from zero, E'(T)   rises slowly to a maximum at TaO.lT,, 

and then drops off rapidly. When T is large 

The next problem is to determine how closely the theoretical 

distribution describes the experimental properties of noncross-linked 

elastomers. He shall calculate the stress relaxation from £(?)  «nd 

compare j.t with the relaxation of a typical elastomer. One of the most 

nearly complete experimental investigations [11] has been of polyiso- 

butylene, and wo shall compare the theoretical results with the data 

for this polymer. 

From Equation (55), the stress relaxation s(t) at constant 

extension e is given by 

s(t)|= ef e l'(r)d<r. 
< yio (80) 

11.    R. S, Marvin, "Interim Report on the Cooperative Program on Dynamic 
Testing,"    National Bureau of Standards, 1951;   and E. R. Fitzgerald, 
L. D. Grandine, Jr.,  and J. D.  Ferry, J.   Appl. Phys. 24, 650  (1953). 
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The time   i   is measured from the in&.tun  j>f extension.    To find   s6*/ 

it is necessary to substitute    E(T)       into this equation and integrate 

over r   for various values of   t. 

The calculations for   sl+)      are described in Appendix IV, and 

sit)      Is plotted in Figure 3.    In the figure, the stress is normalized 

to unit force at   t = o     by dividing by 

s(o)   --Z-N.nls.Tc. 
£ 

fVK»u- (81) 

No explicit equation for    s(t)     can be given because the integration 

is performed graphically. 

Also shown in Figure 3 is the composite experimental stress 

relaxation of an unfractionated polyisobutylene at 30°C   [12],    The 

average molecular weight  is 6,600,000.    The curve has been normalized 

by dividing the original data by 10.4 x 10    dynes/cm -unit extension. 

The time scale for the theoretical stress relaxation has been chosen 

so that the two curves coincide at  a normalized stress of 0.50 

( T„  = 102,04 hours). 

The experimental stress relaxation may be divided into two 

quite distinct regions.    One region includes the  slow relaxation of 

7 2 stresses less than 10    dynes/cm -unit  extension.    This relaxation is 

due to the molecular diffus-;n treated in this thesis.    The other region 

7 2 includes the stresses  larger than 10    dynes/cm -unit  extension.    These 

forces decay very rapidly at  30 C.  and have airoat  entirely disappeared 

12,    The composite curve has been formed by superposition of the data 
plotted in Figure 2 of R. D.   Andrews  and A. V,  Tobolsky, 
£.  Polymer S^i. J_, 221  (1951). 
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-5 10      hours after extension.    For poiyisobutylene, this relaxation is 

not experimentally observable unless the tempara+ure is much lower than 

30 C,    No attempt has  been made to  include the more rapid relaxation 

in the theoretical discussion, and th*   calculated curve may be compared 

only with the relaxation at relatively large times.    For this reason, 

the normalization factor has been chosen so that the stress due to 

diffusion is unity when    t  is  equal to zero. 

It  is  apparent  from the  figure that  the stress decays much 

more slowly than is predicted theoretically.    This result  implies that 

the relaxation times given by Equation  (75)  are not  distributed in   T 

as widely as would be necessary to describe the experimental data for 

poiyisobutylene. 

The theoretical and experimental stress relaxations also do 

not  agree in their dependence upon the molecular weight.    Experimentally, 
3.3 

the time scale of the relaxation is proportional to    M        [12,13],    The 

magnitude of the  forc6  is not  dependent upon   PI.     In other words,  a 

plot  of    s(t)     versus     "t/M is  independent  of the molecular weight. 

From Equations   (77)  and   (81),  it may be seen that the calculated results 

are quite different;    both the force  and the time scale are proportional 

to the first power  of   M.     A plot  of the calculated    s(t)/h     versus £/M 

is independent  o:  the molecular weight. 

KG are more successful in comparing the predicted and exper- 

imental dependence en temperature.    The only parameter  affecting   E.(v) 

13,    T, G, Fox, Jr.,  anu P.  J.  l-'iory, _J,  Am, Chera, Sec. 70, 2384  (1948), 
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that can depend upcn   T (other than tha temperature itself) is the 

resistance constant    C .    Whether or not the elements  along the polymer 

chain are spheres,     £c    is proportional to   >\0 , the viscosity of the 

•A liquid composed of unpolymerized elements  .    For nearly all unpolymer- 

ized liquids, the viscosity is exponentially dependant upon   l/T, and 

H0    presumably varies in the same way here: 

A/AT ,     . 
<?.«   H. - e        . (82) 

If this temperature dependence is substituted into Equation  (77), we 

-I   A/«T 
X. * T   e (83) 

Also, from Equation (81) for s(°) , the calculated stress is directly 

proportional to the absolute temperature and independent of C . The 

proportionality of    s(o)     to T  and of   X    to  JL correspond to 

the temperature dependence observed experimentally for polyisobutylene 

[11,12]. 

It is possible to find the dependence of the stress upon the 

temperature without calculating    s(t)     explicitly.      -n.(X)    consists 

of a partial sum of the expansion coefficients   a^d^     of the. potential. 

Change of the temperature will alter the relaxation time   >/A   of each 

expansion coefficient but will not  change its magnitude.    This effect 

implies that Si   is equal to soiae function of    X%      and not just A 

alone: 

n =n(Xr0). {84) 

Tor a discussion of the relationship between the  viscosity and the 
resistance constants, see  [6,8], 
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From Equations   (57),   (62),   (80), and  (84), we obtain 
** -/ 

S(t) «    Tj« G((S)d£, (85) 

•where the variable   £   denotes  T/T„     | and 

<W>-f*^. (N) 

From Equations  (83)  and  (85), it follows that  a plot of    s(-b)/T     versus 

t I e is independent of the temperature.    The stress at  t —O 

is therefore proportional to T, and the time scale of the relaxation 

depends exponentially upon   I/T .    This temperature dependence satisfies 

the usual reduction method  [14] for relating the mechanical properties 

of elastomers at different temperatures, and agrees with the experimental 

results for polyisobutylene. 

From the above discussion, it may be seen that the dependence 

of    s(t)     upon the temperature is not related to the specific form of 

the diffusion tensor.    On the other hand, the dependence of    s(t)     upon 

the time and the molecular weight does vary with Q.     It would there- 

fore appear that the general solution for    E (T)      in Section TV may be 

correct, but that the approximations  in this section to find Q   are in 

error. 

An important  source of error is the assumption that the 

resistance tensor of a molecule is the same whether or not the surrounding 

14.    R. S.  Marvin, E. R. Fitzgerald,  and J. D. Ferry, _J.  AgpJL, Phys. 21, 
197  (1950);   and J.  D. Ferry, E. R. Fitzgerald, M. F. Johnson,"and 
L. D, Grandine,  JT,,  J.  Appl.   Phys.  22, 717   (1951);   see also 
P, Schwarzl, and A.  J~  Staverrian, _J.  Appl.  Phys.  23, 838  (1952). 



I   - 

11 

fluid is polymerized.    Furthermore, the approximation of D  to  0  may 

hft inaccurate enough to change    C (T)      appreciably.    Both of these 

approximations tend to make   E(T)       -too narrow a function of T ,    From 

this point of view, the theoretical stress relaxation in Figure 3 may 

be considered as an upper limit upon the rate at which the relaxation 

can proceed. 

It might be pointed out that the theoretical distribution of 

relaxation times should agree much better with the extension properties 

of a dilute solution of a polymer.     In a solution, the fluid surrounding 

each polymer molecule is unpolymerized and    ^    is equal to    £o . 



VI. CORRECTION OF THE MECHANICAL PROPERTIES FOR CHAIN ENTANGLEMENTS 

From the previous section it may be concluded that the cal- 

culated stress relaxation does not agree with the experimental results 

for a typical elastomer, and that the primary reasons for this discrepancy 

are the approximations used to find the diffusion tensor. To obtain a 

more precise E(T)  , it is necessary to evaluate the effects of 

polymerization of the surrounding molecules upon the resistance tensor 

p  of a polymer chain. 

Let us examine qualitatively the interactions of the chains 

by considering a rotation around some azimuth angle X. .  If all the 

other angles along the same chain are fixed, one part of the molecule 

(on that side of the j-th bond containing the center of the chain) 

remains stationary. The other and smaller half rotates around the bond 

as a rigid, irregular rod. If the surrounding molecules are small (as 

in a dilute polymer solution), the forces on the chain can bo calculated 

from the resistance constant ^o of each element. Evaluation of these 

forces leads directly to the diffusion tensor used in the previous 

section. 

In the unn...'ji.vtic.lscd polymer, however, the molecules are 

entangled with each other.  The part of the chain rotatine around the 

j-th bond carries with it a large number of surrounding elements, and 

the resistance to the rotation is much larger than the corresponding 

force in the unpolymerized fluid.  If the effective resistance constant 

£.  of each element includes the viscous forces on all the chains wound 

around that element, <f;  is much larger than ^    , Furthermore, if 
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L $ n   f the number of chains caught on the  i-th element  is larger than 

the number  caught on the   (i-l)th element.    This comes about  because the 

chains are free to slip off the end of the rotating molecule.    As a 

result, the effective   £;     are larger near the center of the chain than 

they are at the ends. 

Me might  summarize this discussion by suggesting that the 

diffusion tensor may be calculated in the same way as in Appendix I, 

but with    C     introduced as  a function of   i . 

We shall not attempt to determine the effect of the chain 

entanglements quantitatively.    Instead, we shall assume some ad hoc 

dependence cf    C;    upon   L   and calculate the corresponding stress relax- 

ation.    The purpose of this procedure is to find a simple set of 

resistance constants correctly describing the mechanical properties of 

elastomers.    Once the proper    <?t»    are determined, they should be appli- 

cable to the solution of the diffusion equation for all types of external 

forces, whether mechanical or not. 

Let us assume that    £•     is given by 

*>i     |^A(^h + |-iA i»h+l (87) 

where A   and   p   are constants independent of the temperature.    These 

diffusion constants are symmetric around the center of the chain, 

increase rapidly toward  its center,  and are a multiple A  of    ^     at 

the ends of the molecule.    From Equation  (14) it  is apparent that the 

potential as well as the diffusion tensor is modified by this assump- 

t ion, 
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The new D ., dx t      and  Q(X) are calculated in Appendix V. 

If the function ^(c) is defined by 

(88) 

n/\1 - ii£ a A    jf(c) (89) 

ll(X)    may be expressed as 

i a. r 
;pt.)3(ap- 

where   c   is equal to    T /T     and 

To'=  <?.AaV7(p^)KT- (90) 

The corresponding distribution of relaxation times is 

r'(y) -   N.(P+2)V.T)V <U(c) (91) 
Li   '     3(P*>)3(2p-t3)^Aa"hp    dc      ' 

If T   is very small compared with   vj , 

If  T   is much larger than    r0
y, 

rVv)aJW^J^(JLJ'5 r>?v; (93) 

j£quation&  (31),   (92),  and  (93)  are correct  only if   \/hf*  «y «%'«. 
When   *r< T^/nP*' or       T^» T.'"-,    E-'(r)    is zero.    Tr.&ie limits 
can be neglected in the calculations for    s('fc)   . 
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From Equation  (80)t the stress relaxation  is 

5(t)l"3(r')3(^*3y)e     *    C   dT-dc- (W) 

Two important results may bo obtained directly from these 

equations. In the first place, the temperature dependence of the stress 

relaxation is the same as in the previous section. The stress at small 

times is proportional to the absolute temperature, and the time scale is 

dependent exponentially upon l/T . Secondly, T„'  is dependent upon 

the molecular weight raised to the p-t-l power, provided that A and p 

are independent of M. The form of this dependence corresponds quite 

well to the experimental relationship that the time scale of the 

relaxation is proportional to M ' . 

The stress relaxation of polyisobutylene may be fitted quite 

accurately by setting p equal to five. The calculations for £-(y)      and 

s(t)  when p is five are described in Appendix VI, From Equation (220), 

r'M^ 0-04072 K(KT)V( .      A, 7 //     3.20    0.3b\    /c+3\3l) 
L(r) "   C.aJ n'A (' + 3)'0'3 V287 H" l}   I 3 Kb ~^   &+W    for)   J/•      (95) 

This distribution of relaxation times  is plotted  against the logarithm 

of    T / y„     in Figure 4.    The corresponding stress relaxation is plotted 

in Figure 5, with the force  at t = 0     normalized to unity by dividing by 

S(0)|   = 0.3 4 8 N.nl«.Te. 
(96) 

Also shown in this figure is the experimental stress relaxation plotted 

in Figure 4 (polyisobutylene for M = 6,600,000 and T= 30CC) [12], 

The experimental curve is again normalized by dividing by 
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6        P 
10.4 x 10 dynes/cm -unit extension; T^' is chosen so that the curves 

coincide at a normalized stress of 0.50 ( % = 10'*  hours). 

The theoretical curve agrees with the composite experimental 

curve to within 0.05 over nine decades of time. Only at very small 

times after extension do the two curves disagree.  At these times, the 

relaxation is not produced by diffusion of the azimuth angles of the 

molecules. It may be concluded that a set of diffusion constants givon 

by the rule 

_<-.A(2n-l-0J (97) 

predicts a stress relaxation in excellent agreement with the properties 

of polyisobutylene. The temperature dependence is also correctly 

described oy this law. 

ihe molecular waight dependence predicted by these €,.     does 

not quite agree with the experimental results.  In the first place, the 

calculated t;' is proportional to the sixth power of M, rather than 

the 3,3 power observed experimentally. This disagreement is not totally 

unexpected, however. We have selected a value of p which corrects the 

time dependence not only for the effect of the chain entanglements bu-t 

also for the substitution of D for Q . The latter approximation 

changes the time dependence of s(t)  without altering the dependence 

upon the molecular weight. Consequently, a p of five overcorrects 

for M .  If A were independent of M , we might conclude that about 

The introduction of p also corrects for the approximation to O(X) 
in Equation (72), and for the distribution of molecular weights in 
the unfractionated polymer. Both of these factors change the shape 
of s(t)  without altering the effect of M , and therefore tend tc 
make the predicted dependence of r„'  upon M too large. 

I  
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half of p corrects for the effects of chain entanglements, while the 
- 

other half corrects for the approximation to  D,    A more accurate 

solution of the diffusion equation than is given here should lower the 

dependence of   T0    upcu   M ,  and agree more closely with the experimental 

results. 

The calculated stress relaxation depends  in a second way upon 

the molecular weight.    The magnitude of    s(o)     from Equation  (96)  is * 

proportional to   M   , whereas experimentally it does not vary with   H   . 

One might suspect that    s(o)      is independent of M   for  an unplasticized 

polymer because the chain entanglements act  as temporary cross-links 

between the molecules.    In other words, the rapid motion of one part 

of a chain may be entirely divorced from the rapid motion of another 

part of the same chain.    The stress at  small times would then be inde- 

pendent of the total length of the molecule.    Only over relatively long 

periods of time would the motions of the various parts of a chain be 

related.    During  such motion, the sole effect of the entanglements 

would be to change the resistance constants of the elements.    Since 

the stress relaxation is primarily a slow phenomenon, the treatment 

given here may be essentially correct with regard to the shape of the 

relaxation,  even tnough it  is not  correct  as a calculation for    s(0)    . 

It might be pointed out again that the use of    E("f)      is not 

restricted +o a calculation of the  stress relaxation,    Equation  (55) 

gives    s(t)     corresponding to almost  any   c(t)      whatsis »ar.    For example, 

we may use    £'(**')       to compute the  stress required for  a constant rate 

of extension.    The only limitation upon Equation  (55)   is that   dc/dt 
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must not be too large. In general, the published data for polyisobutylene 

are internally consistent, and the E (T)  which gives the proper stress 

relaxation also will predict the correct response to other types of 

motion. 

i L . 
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VII. CORRECTION OF THE DIELECTRIC DISPERSION FOR CHAIN ENTANGLEMENTS 

The diffusion equation for f (Equation 20) can give the 

response of an elastomer to forces other than those accompanying 

mechanical extension. The only restriction upon the equation is that 

the molecular motion must consist of diffusion in the angles 

©, 9» ^-2 )^3>-- , ^an-i  • The diffusion equation is applicable to the 

dielectric dispersion of polar polymers, for example, if the potential 

is changed to 
iwt 

V = £ •£> • (98) 

F"e is the amplitude of the local electric field of frequency UI/2TT 

and p is the total dipole moment of the polymer molecule. 

The diffusion equation for this potential has been solved 

by Kirkwood and Fuoss for a polymer in which the dipoles are attached 

rigidly to the atoms making up the molecular chain, Polyvinyl chloride 

is an example of such a polymer. Their calculation is intended to 

apply to a solution dilute enough so that all chain-to-chain entangle- 

ments may be neglected. Consequently, they use the diffusion tensor 

derived upon the assumption that all the resistance constants are equal. 

The substitution of Q for D and the approximation to -Tl(\) given 

by Equation (72) are also employed in their calculation. 

The results of Kirkwood and Fuoss may be expressed as a distri- 

bution of electrical relaxation times Q(T) . For a perfectly fractionated 

polymer, this distribution is given by 

Ger) *>+%„)*' (99) 
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The reduced dielectric dispersion     H(u>)     at  frequency WiT is the 

imaginary part of 

-QM--J 7771^5. (ioo) 

3y substituting    ^(T)     into this  integral, they obtain 

HM "r-Tii[(«*-»)***-i1*• -'•]• (101> 
 I'4" * /  

The variable x is equal to wr , where f0 is the relaxation time 

defined by Equation (77). 

H(tw) , divided by its maximum value at X = 1, is plotted 

against the frequency in Figure 6. Also plotted in this figure is the 

audio frequency dispersion of unplasticized polyvinyl chloride [15], 

The data were taken at abcut ICO C, The frequency scale of the theoret- 

ical curve has been chosen so that  H„.„« coincides with the maxim »na* 

-2  99 of the experimental curve   ( T0 = 10    '       seconds). 

The experimental dispersion exhibits  a very broad maximum 

not fitted by the theoretical curve.    We may conclude here, precisely 

as for the stress relaxation, that the calculated distribution of 

relaxation times is not broad enough to  correspond  to the experimental 

data. 

It  is not surprising that the results of Kirkwood  and Fuoss 

disagree with the experimental dispersion of an unplasticized polymer, 

because their theory applies only to a dilute  solution of a polymer. 

15, The composite experimental curve has been formed by superposition 
of the data plotted in Figure 4 of R. M. Fuoss, _J. Am, Chem. Soc. 
63,  369  (1941). 

mm 
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From Section VI, however, we have available a set of resistance constants, 

£. as £ Ai    , that describes the effect of the molecular entanglements 

during mechanical extension of an unplasticized polymer. Since the 

same entanglements occur during the application of an electric field, 

introduction of these resistance constants into the Kirkwood and Fuoss 

theory should give the correct dielectric dispersion. 

The solution of the diffusion equation for an electric field 

has been recalculated using the modified resistance constants. A summary 

of the computations is given in Appendix VII. The new distribution of 

electrical relaxation times is 

I G(T)^Xw/fe« (io2)        ! 
where    %'     is given by Equation  (90).     H (u>)   ,  divided by   HmaK , is 

| plotted in Figure 6  against the frequency, with    fj   set  equ^l to 
!   I 

10" '   '   seconds so that    ^m0i%,   coincides with the maximum of the exper- 

imental curve.    The corrected dielectric dispersion is much closer to 

the experimental result  than is the uncorrected curve. 

It might  be pointed out that  the dispersion for   p   equal to 

five  is not  symmetric  about  its maximum.    This  suggests that the Kirkwood 

and Fuoss theory has not  been corrected properly for  frequencies less 

than      2TT/T0'     .    The  stress relaxation at  corresponding times  is too 

small to measure accurately,  and the correction is not  applicable in 

Equation  (99)  is correct only if     T0/* <* •> «•<• %M .    Equation  (102) 
is  correct  only if    %'/ hp',', «. f   << ra' n .    These limits may be 
neglected in the calculations for   H(w). 
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f 
this region.     Over the three decades of frequency larger than   ZTT/"fj 

the theoretical curve  is never more than 0.08 below the experimental 

H(<J*>)   .    This precision is as good as can be expected because the value 

of  p   w^s determined from the mechanical properties of a different 

polymer,    A more  accurate check on the theory would be the calculation 

of the dielectric dispersion from the stress relaxation of polyvinyl 

chloride itself.    With this reservation,  the modified theory is an 

accurate representation of the electrical properties of polyvinyl 

chloride, 

One way of summarizing the dependence of   l-K<^)   upon frequency 

is to gdfe  its maximum value, because   H^a>   decreases  as the width of 

f\   ^ rt   *-_A.     - r**\0 

i       ' 

the dispersion increases. For polyvinyl chloride, H,„aX  is about 

0.10 at L0O°C- Tn the Kirkwo-od ar»l Fuoss theory, H^^ is 0.285 (for 

a fractionated polymer). When the correction for the chain entangle- 

ments is introduced into the theoretical derivation. V)H,.XX       is reduced 

to 0.143, a value almost as low as the experimental figure. 

The predicted temperature dependence of HC^) also agrees 

with the experimental results. For both of the theories and for 

polyvinyl chloride, the frequency of maximum dispersion is dependent 

exponentially 'iron l/T . The shape and magnitude of H (^') are 

independent of T. Actually, for polyvinyl chloride there is a slight 

change in  Hmax.  as the temperature is raised, but this effect may 

be due to other types of dispersion occurring primarily at higher 

frequencies. 

From Equation (90) ye  can show readily that the calculated 

frequency of the mr.rimum dispersion is proportional to (1/Mj     . 

i 

! 1 
I 
i 
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,'outs truant ly, ths ivoqutfftfy of    H^-,. .'a proportioned to   fi/M)"    fcfcaa 

:    ;i„3 five, while it is prop^nional to   »/?">   for the Kirkocd and 2'ucsa 

;
::aory,    The only experiment id datr\ cm tie variation of  'A(iJ)    *j.th M 

i.-f for polyvinyl chloride p2.43ri«i«o<i vith 20$ diphtinyL fl\>",.    For this 

vjvt? ':«.al, the frequency of maximum dispersion eoents to v'it*;; with  J/M, .. 

freeing with the Kirkwood and Fuoss theory,    Tho predic^J vsajriarion 

:rsrPHponding to e> p   of five cert ft inly doe* not lit the. experimental 

c«ta.    It might to pointed out, how^vRr^ that the plasticization of 

polyvinyl chloride increases   Hmtx   from 0.10 to about 0,17 and radically 

decreases the width of the dispersion.    The value of p    necessary to 

describe the frequency dependence of   H(u»)    would be quite a bit less 

than five.    It therefore appears that the predicted frequency of  H„,oX 

for tho plasticized polymer would vary as a power of I/M    less than 

six but more than one.    There is some indication from the experiments 

of Fuoss that this may be the case.    Until data are available for an 

unplastioized polymer, however, it is necessary to conclude that the 

theoretical molecular weight dependence for  a  p   of five does not agr",e 

with the available experimental results. 

In summary, the resistance constants which give the prop' 

time dependence of the mechanical properties of polyisobutylene ».•/" 

also be used in the diffusion theory of dielectric—dispersion.    '>*,' 

corrected dispersion agrees in its frequency and temperature d3:>f.r4ence 

with experimental results for polyvinyl chloride, but doss ^-%'^i.ve th«u».. 

proper dependence upon the molecular waight. 

16,    R.  M. Fuoss, _.T. ^Vn.  Chem,  Sac, 63, 2401  (1941). 
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VIII. SUMMARY 

If an irr-jh^essiblo noncross-linkedTpolymer is extended in 

such a way that all parts of the material are strained equally, the 

velocity y   of the molecules relative to each other may be expressed 

in terms of the rate of extension ck/'ct  (Equations (4) and (5)). 

The configurations of the molecules at uny instant may be specified 

for our purpose by r., the probability of each configuration. If the 

temperature is above the polymer's glas?-, transformation, the bond lengths 

and bond angles are constant during extension. Then the only variables 

on which c   depends are the two directional angles of the center bond 

of the molecule and the azimuth angles along the chain. 

If the molecules are not cross -linkedt  the intermolecular 

forces during extension are viscous in nature. The force on a single 

element (one skeletal atom together with its side groups) is propor- 

tional to the velocity of that element rcMtive to the surrounding 

material. In other words, the force is equal to £t fy- v^)  , where 

£. is the resistance constant of the i-th element along the chain; 

v.     is the velocity of the element relative to the center of mass of the 

molecule. By substituting these forces into the equation of continuity 

for c , the diffusion equation is obtained; 

V-Q-[7f+fWATl=||.' (20) 

The diffusion tensor D may be calculated from the £. by the method 

of Kirkwood and Fuoss (Appendix I). If rotation of the bonds around 

their azimuth angles is completely unrestricted, the potential V/ is 

***QHrirf>rr.wm.ww*n<r' 
l>ff„„.IH.,,TWp 
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equal to 
<U V v-iS-lW-2'^ (14) 

where    /oi    and     z;     are the cylindrical coordinates of the  i-th 

element relative to the  center  of mass of the molecule.    We may con- 

clude that the molecules  change their configurations by diffusion under 

a potential proportional to the rate of extension   dc/dt      .    For a 

given extension,  the diffusion equation can be  solved for  the probability 

of each molecular  configuration. 

The rate  at which energy is  supplied to the polymer may be 

calculated from the potential and the probability of  each  configuration 

(Equation  (27)).     Since this energy is also equal to the product of the 

external stress  and the rate of extension,  it  is possible to calculate 

the  stress required for  a given extension of the polymer,     A linear 

relationship between the stress  and the strain,in terms of a distribu- 

tion of relaxation times    E'(r)    , may be obtained from a  svigle  solution 

of the diffusion equation.    The general method for finding    E(Y)      is 

summarized on page 31, 

Without  solving explicitly for the distribution of relaxation 

times,  it   is possible to derive the dependence of the  stress    s(t) 

upon the temperature.    For  relaxation at  constant  extension,  a plot of 
..»/__ ._.    -A/RT 

the calculated    s(t;/T      versus    tie is  independent  of the 

temperature.    This dependence agrees with the experimental behavior 

of high polymers such as poiyisobutylene. 

To find   s(t}       explicitly,  it  is necessary to determine the 

diffusion  tensor   0   and solve for    L ("rj     ,    To get  a first  approximation 
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I ' . 
to P , it may be assumed that the resistance constants *?  are all 

equal. This approximation is equivalent to assuming that the motion 

of the polymer molecule is the same whether or not the surrounding 
- 

material  is polymerized.    The    sit)     calculated from these    ?•     decays 

too rapidly in time to  fit  the  experimental stress relaxation of poly- 

isobutylene   (see Figure 3).    Moreover, the predicted dependence of   s(t) 

upon the molecular weight  fails to  agree with the experimental results. 

These disagreements  are not  surprising because the calculated 

E(r)        applies  only to a dilute solution of a polymer.     In order to 

determine the mechanical properties of an unplasticized polymer,  it  is 

necessary to take  into  account  the chain-to-chain  entanglements.    He 

make the _ad hoc assumption that    ^    may be  set  equal to     £„Ai. , 

where A   and   p    are constants.    When   p   is five, the shape of the 

theoretical stress relaxation agrees quite well with the relaxation 

of pclyisobutylene.    Over nine decades of time the maximum error is 

five percent   (see Figure 5).    Thus,  it  is possible to find a diffusion 

tensor which gives the  correct  time dependence of the mecnanical prop- 

erties of the polymer.     The dependency of    s(.w   upon the molecular 

weight  is not  correctly described even after  the resistance constants 

have  been changed. 

The diffusion tensor which gives the proper  stress relaxation 

of  a polymer m^,,   also be used to find  its response to other types of 

forces.    The only restriction upon the  applicability of   D   is that the 

force must result primarily in rotations of the  azimuth  angles of the 

molecules.    One force of this type is an electric field of audio 

frequency,    Kirkwood  and Fuoss have calculated the dielectric dispersion 

I  



57 

of polar polymers by techniques from which the above methods have been 

derived.    However,  they use the diffusion tensor  applicable to dilute 

solutions.     It  is possible  to  carry through their  computations with 

the new diffusion tensor  descriptive of an unplasticized polymer.    The 

results may be expressed  as  a distribution of  (electrical) relaxation 

times given by Equation (102). 

The corresponding dielectric  dispersion is plotted in 

Figure 6 against  the frequency, together with published experimental 

results for polyvinyl  chloride.     The agreement between the theory and 

the data is quite  satisfactory.     It  is  believed that  the  agreement 

would be even better  if the diffusion tensor were derived from the 

stress relaxation of polyvinyl chloride itself, rather than polyiso- 

butylene.    The predicted temperature dependence of the dispersion 

also agrees with observation.    The theoretical variation with the 

molecular weight does not  agree with what experimental data are avail- 

able  in the literature. 

It may be concluded that  the  ad hoc 3et  of resistance  con- 

stants  correctly describes the time-dependent properties of a noncross- 

linked polymer  at  temperatures  above its glass transformation, except 

for the dependence on the molecular weight. 
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APPENDIX  I 

DERIVATION OF THE DIFFUSION TENSOR 

i 

The resistance tensor for  a polymer molecule has been obtained 

by Kirkwood and Fuoss   [7],    Their derivation is reproduced here. 

The Cartesian coordinates erected at the center of mess of 

the molecule are the unit vectors   e,  ,   e^    and   e, , with    e}    in the 

direction of extension.    The elements of the chain are numbered from 

I  to   2t);    ah    denotes the unit  vector   in the direction of the bond 

from element   k-i     to element k.    If the cnain is very long, it may be 

assumed that the  center  of mass of the chain is  always  at  its  average 

position, the midpoint  of the center  bond.    Then the vector   rk , which 

denotes  the position of element  k    relative to the center  of mass,  is 

equal to 
U 

fol^-a      +V    a.l k>" + < 
.- 

VK7«-.   ^t  *i]< ** 
(103) 

isktl 

where   a   is the bond length.    The  angle 9   is the  angle between    <?3    and 

o-h<.,      , while   4   is the angle  between  the plans containing      e        and 

a        and the plane containing     e      and  e ,    This definition of  d   may 

be written as 

<t> = (»*„. §,)(?„ §,)< (104) 
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In the same notation,  the azimuth angles    X-     to   X. are defined by 

X„4, =   (ah4, , £.,•, )(9-^, , ?5) (105) 

Xh =   (jh , S»n*.)feM, i€3) (106) 

f(»h+,,9-k)(&K»«-h-.) 2h- »»«»•»+« 

^lK,aKJ(^,,^J.   -•»««»*     (107) 

The supplement  of the bond angle, *\  , is the  angle between any pair 

of consecutive vectors     9-w   and      9-^^   <.     In carbon chains, r^ is approx- 

imately 71°.    For the purpose of  simplifying the following calculations, 

however,   >^   will be set  equal to 90   .     It  is believed that no  serious 

errors  are introduced by this difference. 

The velocity of the  element  k    relative to the center  of 

gravity is 
W-i 

v-K = n.a»rk *LQJ" (H.-V»      
k***' doe) 

,= »•! 

where & ~   fri^j (109) 

and no = -H)ee(tH)ee,+ (Sme)^e3. (n0) 

If the molecule is moved through a quiescent fluid, the force on the 

element   k   is     £k -yj,   ,  and the torque at the position of another  element 

i.    is    C. (ft,-•'t)K vt •    The  total vector  torque  acting at the 

position of element I due to the forces on all the elements is 

The component  of    T.     in the direction of     o~.t   is the  scalar torque 

Tt    associated with the angle     "£• .    Substituting Equation  (108)  into 
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Equation  (ill)  and rearranging  after  dotting with  cu y we have, for Lt-n+i, 

Jn-I 

(112) 

j*1 

k.;-i 

where 

2n i-l 

p.. -K      Y~ H«.<3-i' I;.k ' £i —  >     £ Q- • Y;-.k- a-       h+i4 1 < i-l 
k*l+< I.T7., (113) k*j*< 

s n 

ana £io =X  ^9-t-Xufc  -^^fri^i ok 

2 

**;*' k*n<rl 

The dyadics   ?-|,       are defined as 

l^w s (r.-rjX.vr;)!- (-vr^Crw-r,), 

where   I.. = «J      .    The dyadic   *• ,     denotes   fc.k   with    v.     identically 

zero.    A corresponding result may be obtained for the lower half of 

the chain.    The torque   T^   associated with the angles   6   and   <f>   is the 

total torque on the molecule referred to the center  of mass : 

(114) 

(115) 

"L = A.'&.+I,€.iV 
2r>-\ 

z (116) 

2» 

where 
k=j-t-i 

:* n -f I 

<- n 

(117) 

k. i 

and 6o= 1 *h(vrj-rkrk). (118) 

k--. 



The value of    (a-- 2r%)2     is 1, 0, 1/2, 1/4, 3/8,  5/16,   ...       for <^ equal to 

1,1+1,1+2,...  ,  and  approaches  1/3 as c^-i.    becomes large.    Without 

much error in £ ,    (o-j-9-,)      may be set equal to 1/3 for all   q^.    Using 

Equation  (113), we then have 
2n 

f 4«tf!I ^c-o t »n-»i 

W»; + i 

The value of    ^o     is given by 

ft    - i-T  <?   ITT?:   T (121) 

Using Equation  (103),  and neglecting the term    4-9-n^i    , we have 

2n 2 Jl    _21_    __* 
£ <„ VTK « 2a   £   ^   H ***V*> , (122) 

Kr 1      or k+i   r*k« L      . l\* I       Or K + l   <r; h«i 

so long as 

^k = CXH^-K
- (123) 
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The dyadic   *0;i.      denotes   £..,,      with f.   identically zero.     All the 

terms of the resistance tensor Q are given by Equations   (113),   (114), 

(117), and  (118). 

It  is prohibitively difficult to find the inverse of /0   and 

thereby to obtain    D = k.T^o" .    However, the diffusion tensor may 

be approximated by   KoT(/o)        , where g xs the average of the resistance 

tensor over  all possible configurations  of the molecule.    Substituting 

Equation  (103)  into the definition of    g..fc      , we may show that 

a.-y...-a. = \ V1*' * ,     v 
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From the f av t that  cv-«' £> = £<, » 
•% ~*       % 

n-! 

/eoa = 3aI *i>-u>?- (124) 

Also,  it may be shown that 

o.   -lp • - O. (125) 

The components of the diagonal diffusion tensor  are readily- 

found from the  average resistance tensor, and are 

Pee= Q„=t>y/4c}{») (126) 

*r J 

o     _ R     - n .*/ 

and 0     =  Q." &J/2o(0, (127) 

z   * 
D   s 3k.T/C,o-n , (128) wher e u

c 

an.J - (129) 

If it  is  assumed that     C     is equal to    tj%   ,   q(')  is approx- 

imately   [n- l^-^l] /2- .    The nonzero terms of the diffusion tensor 

are then 

5*a=   ?<** =   °./2 (130) 

and 5;l =   Do[l-mfl]~2 (131) 

The diffusion operator  is equal to 

V-D-^7   = D^L^f^   |j)+ ^a4hl'[i-i^ir|[a}      (132) 
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and the eigenvalues  and normalized eigenfunctions of this  operator  are 

'i=2 
(133) 

! 

.'/: n+l     ^tn_ Lme4    ^'      if";X; *-le$mn»r?<f-*)S«$ (134) 

where   P,   (cos 0) are the associated Legendre polynomials. 
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EVALUAT ION OF   dxd^ 

From Equation  (70),    dx     is equal to 

when   <Zi- £„       .    Using Equation  (103)  of  Appendix I and neglecting 

4a.. ,        • we find that 

(135) 

136) 
1*1 

2h 

I-*      k = i i:n»t      Wrrt-ri 

2»    ; 

^        ]TZ?"2* IT Yji'MeisfctJ*2*^   5Z(2n*|-jXff-SL.X^-9-JXiar) 
i-:l j«2       |«t irhtZ    krn«l 

From ^f- 2 af = r*- 3 »f  , it follows that 

where 

(138) 

(139) 

•>(>0 
In order to find    r.. ,  it  is necessary to exwress   Q-.   in 

terms of the angles    ^{9, X^.-MS   ,•    From the geometry of the 

molecular  chain,  it may be determined that 

OL.       = rr^ J   "'\A(^)-AK>XJ-A(,)Xh.t)-...-A(^5X.).e;    j<h U40) 
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where 

/  COS 0 Cos <f>     -s\nj>       S\n& cos <f> 

I (141) 
-sinG cos e 

It will be assumed that   <\ , the supplement of the skeletal bond angle, 

is equal to 90  . 

For  j>ntl     f substitution of Equation  (140)  into Equation 

(139) gives 

where  K   is the dyadic   e,©^     ,  and the fourth-order tensors yu*, y^\ 

and     y *   are defined by 

and i?r£ = 6^»V*^-**' 

The scalar function U   of any dyadic   TT    denotes 

The double dot product  is defined as 

and 

Substituting for   <A      from Equation   (134) of Appendix I, we obtain 

P.    =UlM'*!):M     :rf   .-...-.M'k*°: N( -.NCk* :...:N(j    :K 

x ft C ff C , 

(143) 

(144) 

(145) 

(146) 

(147) 

(148) 

(149) 
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where UC^)     = 4= (     J   VOft-*-) Y?M) *«ned9etf, (150) 

0* • & J V'^'V on) 
o 

NW-lLf   fV^V,, (152) 

[V (»")]_     »    /»", •*"«» -*£',%. <153) 

Ve'*) = l      4TT(M^J     
Pi(cosG''e       • (154) 

and v 

As the first  step toward finding     r. ,  it  is possible to 

evaluate the product 

L   =  N(U): N^":...: NC»-°:K. (155) 

Integration r>ver   X-   gives 

N*'[^ + ^4.4^«.]I, (MS) 
wher e  A = - e e     and 

" O - J  - I 

A± =  9, ff. + *,% * S, §, //Ti T e, e, /£? . (157) 

By substitution into Equation  (155)   and contraction of the dot products, 

we find that 

K[otw,-('U»i + ^(tw]. (158) 

^Equations   (158),   (164),   (165),   (171),  and   (233) may be proved by induction. 
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-where    (\  ,   0)^        and    V)'%    denote    I*   , (S    «• £,?) , and (S'   -^   )//7 , 

respectively.    Later  in this appendix,     U)      and    (2jf     will  also appear; 
B 9 

th&y denote   (S^, + dm  )       and    (S,n - o^ )//H        respectively.    The 
\        t 1 \ 

quantity  <r , defined as 

Vk 

is the number of m,   that  are ±\ >K L  is zero >»r>.less  all 

the   "».   are   O   or -*- m.   = ± I ,     and no  consecutive   m     ?^.$d   "V*,    we 
» » 

zero simultaneously.     If L    is not  zero,  its absolute value depends only 

upon  <r . 

is to find    n       and its 

double dot products.    From Equations  (144)  and  (151), we may show that 

M*'     is the sum of   M^'   and    M'^ , where   M^    is  symmetric under 

transposition of the first  and third indices and under transposition 

of the second and fourth indices, whereas    Me      is antisymmetric under 

either transposition.    From the nature of the U   function,  it  is pos~ 

sible to show that  only the  symmetric parts of    M *'   and  L    contribute 

The value of    tj      obtained from integration of Equation  (151)  is 

(160) 

i[*-« A        A 
\ + / \ / \ C*   'rA AX2

+1A/\S:2. 
(161) 

•^     4 - •  ~+  m        4 . 
A 

Rearrangement of the terms and subtraction of the  antisymmetric part 
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give rl, , which may be expressed as 

[ri;%,s = *2 K?+ <*« ^. * ^«KlV 

68 

(162) 

/ o     0)1 -01 
where 

U\ ^ ^ K -n (2V 
(163) 

C= (?,?,-»-e^e,)/* ,   0= e2 ex •*• ?je3 ,  E. = e3§,,and F= e e .    MjV    is zero 

unless    m, =0, ±1,  or ±2.    Also,  it may be  seen immediately that  M,   : M, 

is zero if either m - O    and   m„,, = ±t   , or vice versa.    Hence, the total 

,<h-»0 (W-.) 
product    Ms   :'...:  Mt" (except perhaps near  its  ends) may be 

divided into a set  of scalar products of the form 

B'^tir^r'-.:^1:  A(V° , where Kl = | V, | = 2 , 

and all   m^    in between  (there being v  of them) have the same absolute 

value 0, 1, or  2.    Each of these scalar products may be contracted 

separately, to give: 

/_. lf_j_f(2\(0)    (o)    ...(o)       (2) 

- J   ^(-^f/zidLc^... (0vr.( (ovr(2^, 

I 4(irVr-(2\  
The connection between the  Mj   and    L,    can be expressed as 

>|=V>0 

the product of   L$   with the   £!f    back to    B (lc-r.i) , where    k-r-l     is 

^4) 

Note that the  indices  in the right  side of Equation  (162) have been 
transpos«d from their  order  in Equation  (144). 
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the largest  integer such that   |r"K.^.il=2 

this product are 

^-/[-4-)^U.lH.^°V Kc»t, 

69 

The nonzero values of 

mk=0, f»0 

\*~ - > 

Where W, from Equation   (158),  is 

;-2 

(A) 
From the definition of    fcj-       in Equation  (143),  it follows 

(166) 

that 

cos2e--^ O sin 28     \ 

UUW)=T ° 
sin2S O -cosZQ - -j (167) 

Substituting   VCf*   )      into Equation  (150), we find that 

vcr> = Z. [? s + TK* y + i L°* Sir ? I]. dee) 
odd a 

where   G = -ee -he^e,, H= ei§l-e3e3,  J= ?1JJ+?JJ(. 

The numbers    a.^    are the expansion coefficients of sin20    in terms of 

the Legendre polynomials of cos 0 [17]: 

sin2G = V"   a, £(cos8\ <  
odd « 

(169) 

C 
17,    W.  E.  Byerly,  "Fourier Series  and Spherical. Cylindrical, and 

Ellipsoidal Harmonics," Ginn,  1893,*p,  183." 
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r with  at=.3ir/8^    and 

_ («-2X* + 2K2« + 5j 
(170) 

(n+!--».; 
where  n + r+t   is 

The connection between   LKM'")      and the   M,  can be expressed as the 

product of   UCM^)    with the  M}  up to   A 

the smallest integer such that   |r'in<r_(||= 2. 

product which are not  j:ero arc 

y(n-):nr+,): 

The only value3 of this 

y\<»*r>.  AC«*'*0 

(**.., C 

£.L±X(o)   (O) ...(o)  (2)   S° 
/5 

(171) 

The above connection formula completes the determination of 

R .    For  a. given    r^   ,     R^    may be evaluated by substituting &t 

m0 , aiid the  fn     into Equations  (164),   (165),   (166),  and  (171).     It may 

be seen from these equations that     K.       xs zero unless, for j>k?i-> + l, 

1) mo = 0 

2) *%=0   for   a*n 

3) SJC2U+ S{e>U -   Sx
2(2)h+, + S^(i>^, = ! 

4) |m   | = 0j,o>2     for    ntl<^ k-l 

5) 

7) 

8) 

9) 

10) 

o\(<V+ c°\0)ri - ° ^" h+1 * i*k"2 

(0)k.,(o)k +  (>)h./A •   (2)„_/°)k + C2)k.,0)K = I 

|mj   =0 or !      $Or     k*<^  j-2 

m.     - i 

x O 1*J 
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Corresponding selection rules occur when    jiktn. 

After    Pjk      has  Deen determined,   dx   may be found from 

Equation  (138).    From selection rules 9)  and 10) above, it  is apparent 

that  there  is  at most  one nonzero term in the sum over  j   , corresponding 

to the largest   j  for which   |rrv| = |     .    The other  selection rules permit 

more than one nonzero term in the sun over  U    only if there exists a   "B 

such that    imo+)l =lr"V2l =... = lmvrl = '»     |myr^i|«0        , and  c^  is the 

largest  integer  for which    |mA-2     .    For this case, there are r   nonzero 

terms  in   <dx   .     It may be  shown that the  cross product terms  in    ^x«Jx 

(   ^k 'jk' with   ^ £ k') contribute nothing to -QlX),    Furthermore, 

all of the squared terms      r^h    K^ are  eoual under  tnese circum- 

stances, so that we obtain the correct  jQ(\)   if we use 

dkd* = i*a(2n*l-j)  Pk    Pik. (172) 

The  factor v   is present  only if there exists  a  c^   satisfying the 

criterion above.    Since r changes    ^1(X;    very slightly,  it will be 

neglected  in the later  calculations. 

From the  equations  for    fjk        ,  it may be seen that  axd 
A 

does not depend explicitly upon the exact values  of the nonzero   m„ , 

but rather upon certain functions describing their number  and relative 

positions.     In order to express   "A<dA succinctly, let us denote by 

ix    the number  of   m      between    nv-„,     and    mkl    that  are equal to zero: 

k-i 

u.2sJ"(0L. 
r   far.,  "* (173) 
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Similarly,  v    and  %    denote the number of ±l's and±2's respectively: 

W-l k-l 

^=Z °\> and     *-!L (2)' V (174) 
) = n+l <3-»h-»l 

Also,  let   «,@,  and y denote respectively the number  of sets of 

O's, ±l*Sj and±2's between    fr,„».    and    mk ,   , where a set of O's, for 

example,  is  an uninterrupted string of one or more   rn.   having the value 

zero: 

« = Y. [<°\- (0V0)v]+ (°v, 
qm-tl 

k-l 

$ = t   K-C'U'V,]   4-0),,., 
V"*1 

k-i 

*=I K-(2V2VJ 
Vn*' 

(175) 

(176) 

(177) 

Finally, let   0"  be defined by Equation   (159)  above.    Then   cl^d^       depends 

only upon   «,P,jr>/
A,^,^,°",  and j,  and upon j8, |mM,| , | mw.,|, 

and   I rnK |     .     As an example,  let us choose   -^-^k-i"^   .     If   dxdx 

is not  zero,  it  is necessary that   |mritl|=2  ,    rnk = o ,     and | T7**.. = I • 

Also,  fn0=o     ,  and    jm._(  = | 

(166),   (171),  and   (172)   give 

,    For this case, Equations   (164),  (165), 

dxd> f 0.4(2n + l-]f(|)  (-,-) (4)   (1)^)   (1)    (1) , (178) 

where   j    is the largest  integer  such that m. ^ 0 .    Values of Jl,  ("V^l, 

lmk-i        >  s11^   Jrrtu |     other than those chosen above givo the same dependence 

of   °\d*       upon tf, &,"*,/*•, >>, t , °",    and j, but with a. multiplicative 

constant  different from 16/9. 
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EVALUATION OF  fHJJ 

From Equation   (72),    -0 0)     is  approximately 

H(V) = V   N(Xidjd* , (179) 

where    N)(M     is the number  of    d    having some particular  absolute value, 

and   X   is the  average  eigenvalue of these   a., .    From Appendix II, the 

s* absolute value of   dx   depends  only upon   .& f   |
mh*iU     |mk-.l»        and i^kU 

and upon   u ,'?,'"',fx,^,^}<T,  and  j  .     Hence,   N(>)     is the total number 

of nonzero   dx  that  may be obtained by rearrangement  of the   m, while 

keeping   -£,|ro„+t v- ? j constant.    The calculation is simplified 

somewhat  by introducing the variable  s in place of ] ;    *     is equal to 

the total number  of   rn      from   mh    up to   m. (     ,  inclusive: 

S=   j -n -fj -0- f - |. (180) 

The dependent variable w will be used to denote M-+ v + ?. 

As an example of the method for finding ClCK)     > let us assume 

that it =r w>k_( « 0  , and thus that jmn>)|=2  , mk= ° , and |%„,!=i. 

Evaluation of N'(^) may be facilitated by the following theorem: 

there are 

(fci) 
possible ways of placing A   indistinguishable objects  into   B   distinguish- 

able  sets with at  least  one  object   in each set   [181.     Between    nv   ,   and   Jr..   , 

18,     E.   Ising,  2e.its.   f Physik.   31,  253   (1925), Footnote 1, 
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there are thus 

2*,(r.,.XftXE) 
,*+i arrangements of the m,, into their sots. The factor ZVT* is the 

number of possible arrangements of the plus and minus signs of the m.. 

It is also possible to show that there are 

(r.:) 
different ways of arranging the order of the sets, keeping  101^,1 = 2, 

"Vi s0    y *Bd with alternate sets forced of   ±2»s.    Finally, there are 

arrangements of the  ±l's and O's between   mu    and   m._,  , keeping (0) (o)   =0, 

Wi,»0 .      and     jni. . |=  | v    Combining these results, we have 

N(X) X) =2 l*.iAf-|A*-'A--'A,-f-1/' (181) 

The additional norsr ul two appears when both sides of the molecular 

chain are included in  N(X). 

From Equation (133) in Appendix I, the value of  X   is 

2n-| 

X = aFr 
L ]' m. 

t'2 
% (182) 

when JL-O.    Changing the summation to an integral: 

fU+4?)   f   cK*-") 

or 

X=Dc '*  f   ckv-w) <r   f "<J(y*)    1 

x = (h-w)(n-w-?) 

(183) 

(184) 
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c From Equation  (178)  in Appendix 1/ and the above results, it follows 

that the contribution to  ii(^) for i=mk-(sO   is 

J4-o        I       9 
«%.w.„>   (A)    (' f 

x(c::)(;:;)(5:;)(r::x^'.,), (185) 

! 
i 

where £-*-*.    When the sum is taken in the order   ff",s,/J,,,5j°S 

and   t , the limits are approximately   s/2 i, <r 4 s ,     3*  s (n-w. 

and    <rn -+• (4 £ + C>X>->-w-f) ^. X(n-w)(n-w-*)/n 0S- 

If the molecule is very long  (n»l ), the summation may be 

evaluated quite accurately by replacing the binomial coefficients with 

their asymptotic expansions for large numbers   [19],    As an example, 

the first sum is 

<r 

with limits   s/2£<r£S     a^j    o-$(h-w-s){[X(n-w)^D,]-(4? + 0)}/n. 

By expansion of the binomial term for <r   near  25/3 . the sum may be 

replaced by 

_J_e<p[- 5~    ld<r. 

This integral is approximately 1/3, provided that 

s £ (186) 

19. K, Jeffreys, "Theory of Probability," Oxford, Oxford University 
Press, 1939, p. 50. 
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C If 8  is greater than this quantity, the integral is approximately zero. 

In this way, Equation  (185) may be evaluated by a sevenfold integration. 

The result of the integration is the partial contribution to  JCliX) 

for   X'mki = o: 

W„.    = &^W{*#^C-1(.-*<cW+^ + 5^}, (187) 

where c s 3>>/2n0o. (188) 

Tc obtain the total valuo of -Q(X)   , it is necessary to find 

X ,   N(X)  , and   d-d?        for all values of Jt, \>"hnrt\,    l^w-il*        a*"1 

|mK|    which give nonzero  «Jvax       .    Change of these variables alters 

t* "l°\        by a multiplicative constant  (see Appendix II), alters   (3   slightly 

in terms of   *   and «, and affects the term (^l'i)    in   N(\)  .    Further- 

more, the value of A    is dependent upon Jc., but this effect can be 

neglected.    When all the partial contributions to -fi-tb)      are totalled, 

the final result is thirty times the partial sum given above: 

a(x)= 30[n(X)]     . (189) 

Frcs Equations  (187) and  (189), we can show that 

fi.(ce>)     may also be obtained from Equation  (48)? 

(190) 

n(*>) =   [^(r»*-2«?)]  » U»i) 
i 

that is, fK°°)    is the average over  all possible configurations of the 

square of the sum over   i    of    (A-2
**)      *    By using Equations  (136) and 

«'137),  it may be shown that Equation  (191) leads to the same value for 

Cl(oo)      as is given above.    This agreement serves as an excellent check 

or;, the magnitude of O(X). 
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CALCULATION OF THE STRESS HEUUUTIC 

Fro* Equation (80), the force at constant extension is 

s(t) j = c|et/TE'WaT. 
(192) 

If the function Z(c) is defined by 

Z(c) = -4rr {»42 + 3c + 24IMC+I) - «£=!? - *fiEig _ «Ji±3) ) (193) l/      (c*srl (c*»)       Cc+i)*      ^c-s-l)3/ » 

Equation (75) nay he written as 

t(y)=^Mfz(cU (194) 

where C=T./T and T„« a"" £ / 2 k.T . Substitution of C*(T)  into 

Equation (192) fires 

s(t)| = 4N-',V-Tcf2(c)e"<t/T-)Cai^). (195) 

The integrand has been evaluated nuuerically as a function of l/c    and 

integrated graphically.    Xhe results are given in the following table. 

Table I 

Theoretical Stress Relaxation for   §.= C» 

t/r. fzfele^dW slt)/ifr) 

0 1.753 1.000 
0.0035 1.676 0.956 
G.Ol 1.553 0.886 
0.035 1.257 0.717 
0;1 G.S46 C.483 
0.35 0.310 0.177 
1-G 0.07C 0.040 
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The normalized stress     s(t)/5(o)     is obtained by dividing the integral 

by 1.753. 

The graphical integration mey be checked fay flading the exact 

ralue of the integral when r = o . By ordinary analytic net hods, it aay 

Ibe shown that 

j-p—   =   "£' (1%) 
o 

agreeing with the value obtained fay graphical integration to within 

0.2JC.    fhe stress at t=0    is thus 

S<O)^ = -JN.««.T«. (197) 

s(t)/s(o)        is plotted versus the logarithm u**   t/%    in Figure 3, 

2 04 with    "r     equal to 10 *      hours. 
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ETAUJATICh OF   Q(X) FOR   ^ s^Ai' 

It is the purpose of this appendix to calculate the diffusion 

tensor, the expansion coefficients of the potential, and   Q(X)   that 

result from the assumptions 

•i"\^A(2«+«-i). (195) 

The derivation of the sorerz^a diffusion tensor is carried out 

in Appendix I in a way somewhat more general than was first given by 

Kirkwood and Fucss, and its results are directly applicable here.    From 

Equations   (126),   1.127),   (128),   srd   (129).  the  only ncniero  terms  in   D 

are 

and 

where,  as before, 

D. ..= 
2A«r[i-is?iri' 

(159) 

(20C) 

Q,   =3k.T/^a*n - 
(201) 

The normalized  iigecfuacticns rsnain the same  as   in Equation   (134),  but 

the eigenvalues are BOW 

2»!-( 

K = ^{^.o/f[H¥lf^}. 
i=2 

(202) 

The expansion coefficients of the potential are 

2m 

'203) 



I 

APPENDIX v 80 

Using Equation (103) of Appendix I and neglecting 4a_#l we find that 

f_ ~|« = 2- f_   f_»W % ^-'[1 ^ V ** (204) 

(20!) 
^^Z*=2a2^   ^_ WiKf^f,--,.) +   2A1  Y    51 fcOXS,-«ilC^-9*>. 

ji-l 

•It i^n 

*2       iktsj JJXTTM-2   k-=r»-»2 

„C*> 
R,       is unaltered by chance cff thz- diffusion coefficients  .and may bs 

found from the formulas in Appendix II.    For the exaaaple given previously. 

(! = "%_„= °)  , substitution of   P^    into Equation  (207) gives, for  j»"*», 

li is now possible to find  Q(A)    .      N{X)   has Hhe sane value 

as in Equation (1S1), but   X   is 

A = f—  2_l |:-||Vli »"£ (209) - _ (p*'M>»*)a v~ r.   i*-».! r**'** 
2 An* 

when X — O   .     Using 2n integral as an ss.pprexim*iticn tc  this suaBnation, 

we have 

where b(,) =< " (?!*) 

v\~  .5*. ;* ">•"•' 2_   ^- i 

By evaluating b(j)    and using   pf- 2a* = *f-3v* we find that 
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From Equations   (179),  (181), and  (208), the contribution to  Sl(\) 

when JL«m   « O    is 

af*a/3 \2"/ I  \3r*^* 3* + «"-2f 

x(r,)(p--:)(-'.x:::K.-1).        c«u 

The limits on this sum are the same as are given in Appendix III, except 

that the last one (derived from ^ 6 *> ) is now 

where 1(c) =Cc*3)'p*,'jC^2)^
;[l-y"^";]di, (214) 

«ith c = (7^A=r;x- (215) 

The seventh integral is not generally expressible  in closed form. 

As before, the total value of O(X)      is the sura of the 

contributions for various    j2.,   jmn<.||,    I^K-IL     and j m w j    .    The rela- 

tive magnitudes of the contributions are unaltered by change of the 

resistance constants, and   O(X)     is thirty times the partial sua above. 

(_~w_)P%   ,   +   ii^j^'/     2AX       _  (£A^)[_! L_l\ (212) 

By asymptotic expansion of the binomial terms for large values of the 

variables, the sum may be trans for vied into a sevenfold integral and 

evaluated by the procedures exemplified in Appendix III.    Six integra- 

tions yield 

[Q(X)1 = IhUL        *(c, (213) 
JJJQ      4S(P+»)J(ir5) 

! 
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Fron Equations  {213) and (214) ve may show that 

8Aa  n 
Qk) =  =   . (216) 

As in Appendix III,  it  is  also possible to f-lnd   Ofc")     frcas Equation  (48): 

1 

By using Equations (136) and (137) we find that this average leads to 

the sane value for 71(m)    as is obtained above, indicating that the 

Magnitude af O(X)  is correct. 
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CALCULATION OF THE  CORRECTS) STSIS5 RELAXATION 

When p   is equal to five,   Mc)     in Equation (214) becomes 

••C « »3 

«(c)=(c*3)"3/(^2)3(i-*   *)d 
(218) 

Me could find a solution in closed form for this integral, but it would 

be quite involved. Instead, we shall use the approximation that 

»*<=   *       »3 

f („„•,"• J. • C« 0*[« - <**f - ^J - 2.440.     (219) 
H 

FT oa Equation (91),    E(f)     is then equal to 

•*>=".VM/^7 • * ^ *<« -m-m>> - SOT}- «*» 
From Equation (94), the stress at constant extension is 

This integral has been evaluated graphically.    The amount of graphical 

integration nay he reduced considerably by analytic epproximations to 

the tail of the integral from Ca   to so , where   cn    is any number mush 

greater than unity.    Also, when   t/rj      is ouch smaller than unity, 

S(t)-$(Cjl        may be determined analytically.    Values of the integral 

for various   t/"»£      are given in the table below,. 
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the graphical integration Kay be checked by computing the 

exact value of   &{o) «    For arbitrary   p, 

s( V 3(P^(2r3) 1  ~dc <222> 

By ordinary methods, we find that 

JC   dc     °C        2(p*2Mp*3>- (223' 

For p=5 , the integral is 53,79, agreeing with the value obtained by 

graphical integration to within 0.2J5.    It follows that 

For p=5t       s(t)/s(0)        is plotted versus the l»igaritha of   t/tj    in 

Figure 5, vith   ^    set equal to 10 *      hours. 
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Table  II 

Theoretical Stress Relaxation for     ?L= C0A I5 

0 59.86 1,000 

10"9 57.05 .953 

10"8 55.71 .931 

10~7 53.72 .897 

10 50.88 .850 

10"5 46.51 .777 

10"4 39.56 .661 

10"3 29.40 .491 

10"2 15.73 .263 

0.017 12.62 .211 

C.03 9.30 .155 

0.06 5.77 .0964 

O.i 3.74 .0625 

0.17 2.14 .0358 

0.3 1.07 .0179 

0.6 0.35 .0059 

1.0 0.12 .0021 
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APPENDIX VII 

CALCULATION OF THE CORRECTED DIELECTRIC DISPERSION 

The general solution of the diffusion equation for a polymer 

molecule in an electric field was given originally by Kirkwood and 

Fuoss [7], Their solution is as follows. Let §  be the unit vector 

in the direction of the electric field.  Let ^»x denote the expansion 

coefficients of £•§, , vhere f*  is the dipole moment of th6 molecule: 

K-t»* 7?I>*V <225> 
Mo    x 

r*x and X, as before, are the set of eigenfunctions and eigenvalues 

of the diffusion operator V-O-V . Let nO) be the sum of p-^" 

for all   *'«V  , noraalized so that   £*(») »l : 

il(\)=-=L=-    T"   /*</V (226) 
Cp-t.)      ^ 

The normalization constant     (/£'?j) is the average over   all possible 

configurations of the squai i t-f     £?j   •    The reduced polarization of 

the polymer  is 

OW^/jSHii, (227) 

where <*>=   f^T^r' (228) 

Kirkwood and Fuoss calculate   Q(UJ)    upon the assumption that 

^ = ?„     .    Consequently,  their result  is  applicable only to a dilute 

solution of the polymer.     It  is the purpose of this  appendix to solve 
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p 
for   0(1";     when     .?. = £oAi        ,    when   p   is five, this result  should give 

the polarization of an unplasticized polymer.    It will be assumed that 

the polymer  ?s polyvinyl chloride. 

In polyvinyl chloride, the individual dipole moments are 

associated with the   C-CJG.    bonds.     Let    ^-^    be  the  scalar moment  of 

each of these dipoles  and    b^     the unit  vector in the direction of the 

C-Cfi    bond attached to the k-th carbon atom.    Than 

f* - Ta Y- -k (229) 

even k 

and Mx -  fa Y_   ^    , (230) 
ever* k 

where r^" ^(^ ?3)^\- 
(231> 

Using the geometry of the chain, we may show that 

kh* «J-^(°»*)'AM^-^(V^.)-...-A('I.V.)^^M¥>?3»<282) 

if k.'..>*•*•' . The matrix A(w,^)  is defined by Equation (141). The 

integral for  P,    may be evaluated in much the same manner as P., 

is found in Appendix II. For k?n + I   , we find that 

$>- <-')k ^H- 00 ft Lo>rw;.,(o)%oy 

x[h^\J'L- Z <££• ?<1X lVff <•%<233> 
I Q   I     I   v 

The order of the dyadics in Equation (232) is the reverse of the 
order given by Kirkwood and Fuoss, which appears to be erroneous. 
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- 

where   Jf±     is  (I ± J^y2> and    (0)     ,    (0      and    (i)'       are defined in 

Appendix  II  .    The numbers     O^    are the expansion coefficients  of   sine* 

in Legendre polynomials of   cos 8   [17]: 

si.e = Yi <p.Cco5 0), (234) 

with   o/ = TT/4-   and 

even « 

(*. >)(«4 i)(2» + 5)   ^/ 
a. (235) 

: 

The quantity  cr   is  equal to t) i number of   m     that  are  ±1: 

r -  £ (V 
V2 

From the form of    p for   ^ n + 1   >  it may be seen that   (-»-x    is zero 

unless there exists a K such thai 

1) rno=0 

2) m^= 0       for   c^i n 

(236) 

3)   £«!.•«»<.)....! 

U-2 

6)      |m. | s 

7) m    = 0      jov   q ^ k + I . 
1 1 

Corresponding selection rules occur if kJ n . From 6) and 7), we may 

show that there is at most one nonzero y in the sum for u.x , It 

follows that 

„ um - (±.'"14s'(o) + y s^ts-<i)  ipi . (237) 

The positions of tf+ and "*. in Equation (233) are determined by the 
± sign in Equation (232), Since £x"° i3""° does not depend upon the 
choice of sign, all the optical isomers of polyvinyl chloride have the 
samu dielectric properties. 
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The next  step is to evaluate   .fl CM .    The same  approximation 

can be used here as  is  employed  in Appendix  IIT : 

(238) 

N(X)  is the number of nonzero j->-K that may be obtained by rearrange- 

ment of the m  while keeping £ , k , and <T constant; X    is the average 

eigenvalue of these wx . For convenience, k will be replaced by the 

varliable s , where s denotes the number of m  between rn^ + l  and 

mh_,  inclusive: 

S S k-n. (239) 

As an example,  let us  assume that   i - •      and consequently 

that    mh^,=o       ,    From the theorem in Appendix  III,  it may be shown 

that 

Mrt) -- 2*%:;:,). 

V 
The sum may be approximated by an integral, to give 

A £ 
(p+2)D. n<r 

2As 
I 

(h-s;p+' 

2 

,P" 

(240) 

The additional power of two appears when both sides of the chain are 

included in    N»(M .    From Equation  (209)  in Appendix V, we have 

-x.;  k^i-f [1-1^1]-"*"^. (Mi) 

(242) 

In addition,    fy^'?,)1        is equal to   iK-,/3       .    Combining Equations  (237), 

i f 
! 
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u 
(238),  and (240). we find that the contribution to   0(0      for  k-\     is 

[O(A)] «-ii;(-i-f(,r;.,). (243) 

The limits on this sum are   0£ s s n,    s/2 i f < s , J even   ^  and 

or£ 
2XAs 

(p+2)0on
J 

(h»f)'*' hf 
(244) 

If we introduce the asymptotic  expansion of the binomial coefficient, 

the sum may be replaced by an  integral 

tl        4 

M»La±n 
f     (2s-3cr)s 

.   :        " J >/JTTC 
s»o ail/* 

2<r 
1d<rds, (245) 

with Equation  (244) still to be added as a limit.    The integral over 

<r    is approximately 1/3 if tha limits include   2s/3 ,  and zero if they 

do not.    Hence 

tnWL-i/ i f-t. 
i - (246) 

with 2 _   zXA    r    i i  I'1 

3        (p«.21Dh*L („.,)?•' „P*» J • (247) 

The second integration gives 

fn(x^|[i_(1 + xoH 

As in Equation   (90), 

To'= ^Aa2np*7(P+2)UT. 

In order to find the total value of   0(X}   ,  it  is necessary 

to add up the contributions for  each value of   x>.    The dependence of A 

(248) 

(249) 
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upon  -2   can be neglected;  and   ClLx) - 3[n(X)JAii : 

(250) 

From Equations   (227) and  (228) it  is readily found that 

G(T) = 
(jj + l)   T   P (*+<)    P 

(251) 

and O(-) 
00 

'      (ri)  I      /_£_) , (fill    " . (252) 

By a change in variables, Equation  (252)  becomes 

•r:-i (253) 

For arbitrary  p , it  is impossible to find   <3(w)       in closed 

form.    For  p = 5 , however, the integration can be performed.    He obtain 

(L^r.'-OQM = ^JL •^y.'o [0-y)U + ^T*('-*-^ •> 

Ci-a)0-njf)"ci-x^. (254) 

i 

15 

u   is defined by 

y»(l-i«T./)'»'. (255) 

As above, Y± is (l±y^J)/2 , Q(u>) is given in the table below for 

varicv-s values of to. J(u>) is the real part of Q(») , while-H^') 

is the imaei*?<ry: 

Q(u>)  =  J(u>) -LH(W). (256) 



APPENDIX VII 92 

The maximum value of   HC^)   is about 0.143 at   UJ^' ~   10.    H (u»)/H, 

is plotted in t igure 6, with   f0     set  equal to 10    *       seconds. 

Table  III 

.- .5 
iheoretical Reduced Polarization for     Ki~^.^L 
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.606 

,525 

.468 

.418 

.359 

,285 

.218 

.0073 

.0236 

.0570 

.0837 

.0949 

.1063 

.1254 

.1404 

.1427 

,1433 

.1399 

.1290 

.1193 

.1085 

.0947 

.0759 

.0583 

H(u,)/H mm 

.051 

.165 

.398 

.584 

.662 

.742 

.875 

.980 

.996 

1.000 

„976 

.900 

.632 

.758 

.661 

.530 

.407 
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